Relative Contributions of Pseudohypoxia and Inflammation to Peritoneal Alterations with Long-Term Peritoneal Dialysis Patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35168992
PubMed Central
PMC9435980
DOI
10.2215/cjn.15371121
PII: 01277230-202208000-00025
Knihovny.cz E-zdroje
- Klíčová slova
- connective tissue growth factor, glucose exposure, inflammation, peritoneal dialysis, peritoneal membrane alterations, plasminogen activator inhibitor-1, pseudohypoxia, vascular endothelial growth factor,
- MeSH
- dialyzační roztoky škodlivé účinky metabolismus MeSH
- glukosa škodlivé účinky metabolismus MeSH
- hypoxie MeSH
- lidé MeSH
- NAD * metabolismus MeSH
- peritoneální dialýza * škodlivé účinky MeSH
- peritoneum metabolismus MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- dialyzační roztoky MeSH
- glukosa MeSH
- NAD * MeSH
- vaskulární endoteliální růstový faktor A MeSH
Long-term peritoneal dialysis is associated with alterations in peritoneal function, like the development of high small solute transfer rates and impaired ultrafiltration. Also, morphologic changes can develop, the most prominent being loss of mesothelium, vasculopathy, and interstitial fibrosis. Current research suggests peritoneal inflammation as the driving force for these alterations. In this review, the available evidence for inflammation is examined and a new hypothesis is put forward consisting of high glucose-induced pseudohypoxia. Hypoxia of cells is characterized by a high (oxidized-reduced nicotinamide dinucleotide ratio) NADH-NAD+ ratio in their cytosol. Pseudohypoxia is similar but occurs when excessive amounts of glucose are metabolized, as is the case for peritoneal interstitial cells in peritoneal dialysis. The glucose-induced high NADH-NAD+ ratio upregulates the hypoxia-inducible factor-1 gene, which stimulates not only the glucose transporter-1 gene but also many profibrotic genes like TGFβ, vascular endothelial growth factor, plasminogen activator inhibitor-1, and connective tissue growth factor, all known to be involved in the development of peritoneal fibrosis. This review discusses the causes and consequences of pseudohypoxia in peritoneal dialysis and the available options for treatment and prevention. Reducing peritoneal exposure to the excessively high dialysate glucose load is the cornerstone to avoid the pseudohypoxia-induced alterations. This can partly be done by the use of icodextrin or by combinations of low molecular mass osmotic agents, all in a low dose. The addition of alanyl-glutamine to the dialysis solution needs further clinical investigation.
Zobrazit více v PubMed
Coester AM, Smit W, Struijk DG, Parikova A, Krediet RT: Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident peritoneal dialysis patients. Perit Dial Int 34: 195–203, 2014 PubMed PMC
Krediet RT: Acquired decline in ultrafiltration in peritoneal dialysis: The role of glucose. J Am Soc Nephrol 32: 2408–2415, 2021 PubMed PMC
Parikova A, Michalickova K, van Diepen ATN, Voska L, Viklicky O, Krediet RT: Do low GDP neutral pH solutions prevent or retard peritoneal membrane alterations in long-term peritoneal dialysis? [published online ahead of print July 14, 2021]. Perit Dial Int 10.1177/08968608211027007008 PubMed DOI
Ross R: Atherosclerosis--An inflammatory disease. N Engl J Med 340: 115–126, 1999 PubMed
Krediet RT, Zuyderhoudt FM, Boeschoten EW, Arisz L: Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 17: 43–52, 1987 PubMed
Douma CE, de Waart DR, Struijk DG, Krediet RT: Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 132: 329–340, 1998 PubMed
Zemel D, Koomen GCM, Hart AAM, ten Berge IJ, Struijk DG, Krediet RT: Relationship of TNF-α, interleukin-6, and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 122: 686–696, 1993 PubMed
Pecoits-Filho R, Stenvinkel P, Wang AY-M, Heimbürger O, Lindholm B: Chronic inflammation in peritoneal dialysis: The search for the holy grail? Perit Dial Int 24: 327–339, 2004 PubMed
Lambie M, Chess J, Donovan KL, Kim YL, Do JY, Lee HB, Noh H, Williams PF, Williams AJ, Davison S, Dorval M, Summers A, Williams JD, Bankart J, Davies SJ, Topley N; Global Fluid Study Investigators : Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol 24: 2071–2080, 2013 PubMed PMC
Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF: Splancnic volume, not flow rate determines peritoneal permeability. ASAIO Trans 23: 583–587, 1989 PubMed
Nakano T, Mizumasa T, Kuroki Y, Eriguchi M, Yoshida H, Taniguchi M, Masutani K, Tsuruya K, Kitazono T: Advanced glycation end products are associated with immature angiogenesis and peritoneal dysfunction in patients on peritoneal dialysis. Perit Dial Int 40: 67–75, 2020 PubMed
Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT: Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13: 470–479, 2002 PubMed
Tăranu T, Florea L, Păduraru D, Georgescu SO, Frâncu LL, Stan CI: Morphological changes of the peritoneal membrane in patients with long-term dialysis. Rom J Morphol Embryol 55: 927–932, 2014 PubMed
Schaefer B, Bartosova M, Macher-Goeppinger S, Sallay P, Vörös P, Ranchin B, Vondrak K, Ariceta G, Zaloszyc A, Bayazit AK, Querfeld U, Cerkauskiene R, Testa S, Taylan C, VandeWalle J, Yap Y, Krmar RT, Büscher R, Mühlig AK, Drozdz D, Caliskan S, Lasitschka F, Fathallah-Shaykh S, Verrina E, Klaus G, Arbeiter K, Bhayadia R, Melk A, Romero P, Warady BA, Schaefer F, Ujszaszi A, Schmitt CP: Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int 94: 419–429, 2018 PubMed
Bartosova M, Schaefer B, Vondrak K, Sallay P, Taylan C, Cerkauskiene R, Dzierzega M, Milosevski-Lomic G, Büscher R, Zaloszyc A, Romero P, Lasitschka F, Warady BA, Schaefer F, Ujszaszi A, Schmitt CP: Peritoneal dialysis vintage and glucose exposure but not peritonitis episodes drive peritoneal membrane transformation during the first years of PD. Front Physiol 10: 356, 2019 PubMed PMC
Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJG, Becker AE, Hillen B, Borst C: Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 32: 655–662, 1998 PubMed
Fijen JW, Struijk DG, Krediet RT, Boeschoten EW, de Vries JP, Arisz L: Dialysate leucocytosis in CAPD patients without clinical infection. Neth J Med 33: 270–280, 1988 PubMed
Betjes MGH, Tuk CW, Struijk DG, Krediet RT, Arisz L, Hoefsmit ECM, Beelen RHJ: Immuno-effector characteristics of peritoneal cells during CAPD treatment: A longitudinal study. Kidney Int 43: 641–648, 1993 PubMed
Parikova A, Hruba P, Krejcik Z, Stranecky V, Franekova J, Krediet RT, Viklicky O: Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. Am J Physiol Renal Physiol 318: F229–F237, 2020 PubMed
Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L: Peritoneal permeability to proteins in diabetic and non-diabetic continuous ambulatory peritoneal dialysis patients. Nephron 42: 133–140, 1986 PubMed
Buis B, Koomen GCM, Imholz ALT, Struijk DG, Reddingius RE, Arisz L, Krediet RT: Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD. Nephrol Dial Transplant 11: 1113–1120, 1996 PubMed
Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT: Growth factors VEGF and TGF-β1 in peritoneal dialysis. J Lab Clin Med 134: 124–132, 1999 PubMed
Lopes Barreto D, Coester AM, Struijk DG, Krediet RT: Can effluent matrix metalloproteinase 2 and plasminogen activator inhibitor 1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients? Perit Dial Int 33: 529–537, 2013 PubMed PMC
Lopes Barreto D, Coester AM, Noordzij M, Smit W, Struijk DG, Rogers S, de Waart DR, Krediet RT: Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients. Nephrol Dial Transplant 26: 3739–3744, 2011 PubMed
Pecoits-Filho R, Araújo MR, Lindholm B, Stenvinkel P, Abensur H, Romão JE Jr., Marcondes M, De Oliveira AH, Noronha IL: Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 17: 1480–1486, 2002 PubMed
Oh KH, Jung JY, Yoon MO, Song A, Lee H, Ro H, Hwang YH, Kim DK, Margetts P, Ahn C: Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol Dial Transplant 25: 1639–1646, 2010 PubMed
Yu Z, Lambie M, Chess J, Williams A, Do JY, Topley N, Davies SJ: Peritoneal protein clearance is a function of local inflammation and membrane area wheres systemic inflammation and comorbidity predict survival of incident peritoneal dialysis patients. Front Physiol 10: 105, 2019 PubMed PMC
Rodrigues AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, Castro e Melo J, Krediet RT: Evaluation of peritoneal transport and membrane status in peritoneal dialysis: Focus on incident fast transporters. Am J Nephrol 27: 84–91, 2007 PubMed
Cho Y, Johnson DW, Vesey DA, Hawley CM, Pascoe EM, Clarke M, Topley N; balANZ Trial Investigators : Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol 15: 8, 2014 PubMed PMC
Archie JP: Mathematical coupling of data. A common source of error. Arch Surg 93: 297–303, 1981 PubMed PMC
Trayhurn P: Hypoxia and adipocyte physiology: Implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34: 207–236, 2014 PubMed
Zinna A, Kurpisz M: Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Application and therapies. BioMed Res Int 2015: 549412, 2015 PubMed PMC
Darby IA, Hewitson TD: Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365: 553–562, 2016 PubMed
Joseph JP, Harishankar MK, Pillai AA, Devi A: Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 80: 23–32, 2018 PubMed
Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG: Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813, 1993 PubMed
Mohlin S, Wigerup C, Jögi A, Påhlman S: Hypoxia, pseudohypoxia and cellular differentiation. Exp Cell Res 356: 192–196, 2017 PubMed
Navale AM, Paranjape AN: Glucose transporters: Physiological and pathological roles. Biophys Rev 8: 5–9, 2016 PubMed PMC
Cura AJ, Carruthers A: Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2: 863–914, 2012 PubMed PMC
Tilton RG, Baier LD, Harlow JE, Smith SR, Ostrow E, Williamson JR: Diabetes-induced glomerular dysfunction: Links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int 41: 778–788, 1992 PubMed
Smit W, van Dijk P, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT: Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 23: 440–449, 2003 PubMed
Krediet RT, van Westrhenen R, Zweers MM, Struijk DG: Clinical advantages of new peritoneal dialysis solutions. Nephrol Dial Transplant 17[Suppl 3]: 16–18, 2002 PubMed
Galvan DL, Green NH, Danesh FR: The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92: 1051–1057, 2017 PubMed PMC
Halestrap AP, Wilson MC: The monocarboxylate transporter family--Role and regulation. IUBMB Life 64: 109–119, 2012 PubMed
van Westrhenen R, Aten J, Aberra M, Dragt CAM, Deira G, Krediet RT: Effects of inhibition of the polyol pathway during chronic peritoneal exposure to a dialysis solution. Perit Dial Int 25[Suppl 3]: S18–S21, 2005 PubMed
van Westrhenen R, Zweers MM, Kunne C, de Waart DR, van der Wal AC, Krediet RT: A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution. Perit Dial Int 28: 487–496, 2008 PubMed
Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O: Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 11: 717–728, 2000 PubMed
Morishita Y, Ookawara S, Hirahara I, Muto S, Nagata D: HIF-1α mediates Hypoxia-induced epithelial-mesenchymal transition in peritoneal mesothelial cells. Ren Fail 38: 282–289, 2016 PubMed
Li J, Li SX, Gao XH, Zhao LF, Du J, Wang TY, Wang L, Zhang J, Wang HY, Dong R, Guo ZY: HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract 215: 644–652, 2019 PubMed
Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X: Stat3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med 19: 283, 2021 PubMed PMC
Border WA, Noble NA: Transforming growth factor β in tissue fibrosis. N Engl J Med 331: 1286–1292, 1994 PubMed
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q: Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 21: 1248–1259, 2017 PubMed PMC
Mason RM, Wahab NA: Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14: 1358–1373, 2003 PubMed
Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J: Gene transfer of transforming growth factor-β1 to the rat peritoneum: Effects on membrane function. J Am Soc Nephrol 12: 2029–2039, 2001 PubMed
Dvorak HF, Brown LF, Detmar M, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039, 1995 PubMed PMC
Ferrara N: Vascular endothelial growth factor. The trigger for neovascularization in the eye. Lab Invest 72: 615–618, 1995 PubMed
Vriese AS, Tilton RG, Stephan CC, Lameire NH: Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 12: 1734–1741, 2001 PubMed
Zweers MM, Struijk DG, Smit W, Krediet RT: Vascular endothelial growth factor in peritoneal dialysis: A longitudinal follow-up. J Lab Clin Med 137: 125–132, 2001 PubMed
Parikova A, Krediet RT: Non-invasive measurement of peritoneal membrane alterations. Bull Dial Dom 3: 119–125, 2020
Lijnen HR: Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost 3: 35–45, 2005 PubMed
Sakamoto K, Sakamoto T, Ogawa H: Effects of metabolic risk factors on production of plasminogen activator inhibitor-1 and adiponectin by adipocytes. Circ J 72: 844–846, 2008 PubMed
Wilson RB: Hypoxia, cytokines and stromal recruitment: Parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 3: 20180103, 2018 PubMed PMC
Lee HB, Ha H: Plasminogen activator inhibitor-1 and diabetic nephropathy. Nephrology (Carlton) 10[Suppl]: S11–S13, 2005 PubMed
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H: Plasminogen activator inhibitor type 1 as a regulator of fibrosis. J Cell Biochem 119: 17–27, 2018 PubMed
Lopes Barreto D, Struijk DG, Krediet RT: Peritoneal effluent MMP-2 and PAI-1 in encapsulating peritoneal sclerosis. Am J Kidney Dis 65: 748–753, 2015 PubMed
Valle-Tenney R, Rebolledo DL, Lipson KE, Brandan E: Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-β signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biol 87: 48–65, 2020 PubMed
Heilig CW, Deb DK, Abdul A, Riaz H, James LR, Salameh J, Nahman NS Jr.: GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol 38: 39–49, 2013 PubMed
Oh KH, Margetts PJ: Cytokines and growth factors involved in peritoneal fibrosis of peritoneal dialysis patients. Int J Artif Organs 28: 129–134, 2005 PubMed
Zarrinkalam KH, Stanley JM, Gray J, Oliver N, Faull RJ: Connective tissue growth factor and its regulation in the peritoneal cavity of peritoneal dialysis patients. Kidney Int 64: 331–338, 2003 PubMed
Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, Matsukawa Y, Imai M, Oliver N, Goldschmeding R, Aten J, Krediet RT, Yuzawa Y, Matsuo S: Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal PubMed
Corcoran SE, O’Neill RAJ: Hif1α and metabolic reprogramming in inflammation. J Clin Invest 126: 3699–3707, 2016 PubMed PMC
Robertson LM, Fletcher NM, Diamond MP, Saed GM: Evitar (L-Alanyl-L-Glutamine) regulates key signaling molecules in the pathogenesis of postoperative tissue fibrosis. Reprod Sci 26: 724–733, 2019 PubMed
Ferrantelli E, Liappas G, Vila Cuenca M, Keuning ED, Foster TL, Vervloet MG, Lopéz-Cabrera M, Beelen RH: The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int 89: 625–635, 2016 PubMed
Vychytil A, Herzog R, Probst P, Ribitsch W, Lhotta K, Machold-Fabrizii V, Wiesholzer M, Kaufmann M, Salmhofer H, Windpessl M, Rosenkranz AR, Oberbauer R, König F, Kratochwill K, Aufricht C: A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int 94: 1227–1237, 2018 PubMed