Peritoneal Dialysis Vintage and Glucose Exposure but Not Peritonitis Episodes Drive Peritoneal Membrane Transformation During the First Years of PD

. 2019 ; 10 () : 356. [epub] 20190402

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31001140

The impact of peritoneal dialysis (PD) associated peritonitis on peritoneal membrane integrity is incompletely understood. Children are particularly suited to address this question, since they are largely devoid of preexisting tissue damage and life-style related alterations. Within the International Peritoneal Biobank, 85 standardized parietal peritoneal tissue samples were obtained from 82 children on neutral pH PD fluids with low glucose degradation product (GDP) content. 37 patients had a history of peritonitis and 16 of the 37 had two or more episodes. Time interval between tissue sampling and the last peritonitis episode was 9 (4, 36) weeks. Tissue specimen underwent digital imaging and molecular analyses. Patients with and without peritonitis were on PD for 21.0 (12.0, 36.0) and 12.8 (7.3, 27.0) months (p = 0.053), respectively. They did not differ in anthropometric or histomorphometric parameters [mesothelial coverage, submesothelial fibrosis, blood, and lymphatic vascularization, leukocyte, macrophage and activated fibroblast counts, epithelial-mesenchymal transition (EMT), podoplanin positivity and vasculopathy]. VEGF and TGF-ß induced pSMAD abundance were similar. Similar findings were also obtained after matching for age and PD vintage and a subgroup analysis according to time since last peritonitis (<3, <6, >6 months). In patients with more than 24 months of PD vintage, submesothelial thickness, vessel number per mmm section length and ASMA fibroblast positivity were higher in patients with peritonitis history; only the difference in ASMA positivity persisted in multivariable analyses. While PD duration and EMT were independently associated with submesothelial thickness, and glucose exposure and EMT with peritoneal vessel density in the combined groups, submesothelial thickness was independently associated with EMT in the peritonitis free patients, and with duration of PD in patients with previous peritonitis. This detailed analysis of the peritoneal membrane in pediatric patients on PD with neutral pH, low GDP fluids, does not support the notion of a consistent long-term impact of peritonitis episodes on peritoneal membrane ultrastructure, on inflammatory and fibrotic cell activity and EMT. Peritoneal alterations are mainly driven by PD duration, dialytic glucose exposure, and associated EMT.

Zobrazit více v PubMed

Andreoli S. P., Leiser J., Warady B. A., Schlichting L., Brewer E. D., Watkins S. L. (1999). Adverse effect of peritonitis on peritoneal membrane function in children on dialysis. Pediatr. Nephrol. 13 1–6. 10.1007/s004670050553 PubMed DOI

Aroeira L. S., Aguilera A., Sánchez-Tomero J. A., Bajo M. A., del Peso G., Jiménez-Heffernan J. A., et al. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18 2004–2013. 10.1681/ASN.2006111292 PubMed DOI

Aroeira L. S., Aguilera A., Selgas R., Ramirez-Huesca M., Perez-Lozano M. L., Cirugeda A., et al. (2005). Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am. J. Kidney Dis. 46 938–948. 10.1053/j.ajkd.2005.08.011 PubMed DOI

Ates K., Koc R., Nergizoglu G., Erturk S., Keven K., Sen A., et al. (2000). The longitudinal effect of a single peritonitis episode on peritoneal membrane transport in CAPD patients. Perit. Dial. Int. 20 220–226. PubMed

Aufricht C., Beelen R., Eberl M., Fischbach M., Fraser D., Jorres A., et al. (2017). Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the european training and research in peritoneal dialysis (EuTRiPD) network. Kidney Int. 92 824–835. 10.1016/j.kint.2017.02.037 PubMed DOI

Bajo M. A., Perez-Lozano M. L., Albar-Vizcaino P., del Peso G., Castro M. J., Gonzalez-Mateo G., et al. (2011). Low-GDP peritoneal dialysis fluid (‘balance’) has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol. Dial. Transplant. 26 282–291. 10.1093/ndt/gfq357 PubMed DOI

Balogh P., Magyar M., Szabo A., Mullner N., Liko I., Patocs A., et al. (2015). The subcellular compartmentalization of TGFbeta-RII and the dynamics of endosomal formation during the signaling events: An in vivo study on rat mesothelial cells. Eur. J. Cell Biol. 94 204–213. 10.1016/j.ejcb.2015.03.001 PubMed DOI

Blackwell M., Iacus S., King G., Porro G. (2009). CEM: coarsened exact matching in stata. Stata J. 9 524–546. PubMed

Blake P. G. (2018). Is the peritoneal dialysis biocompatibility hypothesis dead? Kidney Int. 94 246–248. 10.1016/j.kint.2018.04.014 PubMed DOI

Boudville N., Kemp A., Clayton P., Lim W., Badve S. V., Hawley C. M., et al. (2012). Recent peritonitis associates with mortality among patients treated with peritoneal dialysis. J. Am. Soc. Nephrol. 23 1398–1405. 10.1681/asn.2011121135 PubMed DOI PMC

Braun N., Alscher D. M., Fritz P., Edenhofer I., Kimmel M., Gaspert A., et al. (2011). Podoplanin-positive cells are a hallmark of encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 26 1033–1041. 10.1093/ndt/gfq488 PubMed DOI

Campbell D. J., Johnson D. W., Mudge D. W., Gallagher M. P., Craig J. C. (2015). Prevention of peritoneal dialysis-related infections. Nephrol. Dial. Transplant. 30 1461–1472. 10.1093/ndt/gfu313 PubMed DOI

Chen Y. T., Chang Y. T., Pan S. Y., Chou Y. H., Chang F. C., Yeh P. Y., et al. (2014). Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J. Am. Soc. Nephrol. 25 2847–2858. 10.1681/asn.2013101079 PubMed DOI PMC

Cho Y., Johnson D. W., Craig J. C., Strippoli G. F., Badve S. V., Wiggins K. J. (2014). Biocompatible dialysis fluids for peritoneal dialysis. Coch. Database Syst. Rev. 3:Cd007554. 10.1002/14651858.CD007554.pub2 PubMed DOI

Davies S. J., Bryan J., Phillips L., Russell G. I. (1996). Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol. Dial. Transplant. 11 498–506. PubMed

Davies S. J., Phillips L., Griffiths A. M., Russell L. H., Naish P. F., Russell G. I. (1998). What really happens to people on long-term peritoneal dialysis? Kidney Int. 54 2207–2217. 10.1046/j.1523-1755.1998.00180.x PubMed DOI

Davies S. J., Phillips L., Naish P. F., Russell G. I. (2001). Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J. Am. Soc. Nephrol. 12 1046–1051. PubMed

Del Peso G., Jimenez-Heffernan J. A., Selgas R., Remon C., Ossorio M., Fernandez-Perpen A., et al. (2016). Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. a case-control study on human biopsies. Perit. Dial. Int. 36 129–134. 10.3747/pdi.2014.00038 PubMed DOI PMC

Di Paolo N., Sacchi G., De Mia M., Gaggiotti E., Capotondo L., Rossi P., et al. (1986). Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 44 204–211. 10.1159/000183987 PubMed DOI

Grossin N., Wautier M. P., Wautier J. L., Gane P., Taamma R., Boulanger E. (2006). Improved in vitro biocompatibility of bicarbonate-buffered peritoneal dialysis fluid. Perit. Dial. Int. 26 664–670. PubMed

Haas S., Schmitt C. P., Arbeiter K., Bonzel K. E., Fischbach M., John U., et al. (2003). Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J. Am. Soc. Nephrol. 14 2632–2638. PubMed

Harambat J., van Stralen K. J., Kim J. J., Tizard E. J. (2012). Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 27 363–373. 10.1007/s00467-011-1939-1 PubMed DOI PMC

Hautem N., Morelle J., Sow A., Corbet C., Feron O., Goffin E., et al. (2017). The NLRP3 Inflammasome has a critical role in peritoneal dialysis-related peritonitis. J. Am. Soc. Nephrol. 28 2038–2052. 10.1681/asn.2016070729 PubMed DOI PMC

Honda K., Hamada C., Nakayama M., Miyazaki M., Sherif A. M., Harada T., et al. (2008). Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin. J. Am. Soc. Nephrol. 3 720–728. 10.2215/CJN.03630807 PubMed DOI PMC

Johnson D. W., Brown F. G., Clarke M., Boudville N., Elias T. J., Foo M. W., et al. (2012). Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J. Am. Soc. Nephrol. 23 1097–1107. 10.1681/asn.2011121201 PubMed DOI PMC

Katz S., Balogh P., Nagy N., Kiss A. L. (2012). Epithelial-to-mesenchymal transition induced by Freund’s adjuvant treatment in rat mesothelial cells: a morphological and immunocytochemical study. Pathol. Oncol. Res. 18 641–649. 10.1007/s12253-011-9489-1 PubMed DOI

Li P. K., Szeto C. C., Piraino B., de Arteaga J., Fan S., Figueiredo A. E., et al. (2016). ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit. Dial. Int. 36 481–508. 10.3747/pdi.2016.00078 PubMed DOI PMC

Lopez-Cabrera M. (2014). Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Adv. Med. 2014:473134. 10.1155/2014/473134 PubMed DOI PMC

Margetts P. J., Kolb M., Yu L., Hoff C. M., Holmes C. J., Anthony D. C., et al. (2002). Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum. Am. J. Pathol. 160 2285–2294. 10.1016/s0002-9440(10)61176-5 PubMed DOI PMC

Mehrotra R., Devuyst O., Davies S. J., Johnson D. W. (2016). The current state of peritoneal dialysis. J. Am. Soc. Nephrol. 27 3238–3252. 10.1681/asn.2016010112 PubMed DOI PMC

Mortier S., De Vriese A. S., McLoughlin R. M., Topley N., Schaub T. P., Passlick-Deetjen J., et al. (2003). Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J. Am. Soc. Nephrol. 14 1296–1306. PubMed

Mortier S., Faict D., Lameire N. H., De Vriese A. S. (2005). Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 67 1559–1565. 10.1111/j.1523-1755.2005.00237.x PubMed DOI

Mortier S., Faict D., Schalkwijk C. G., Lameire N. H., De Vriese A. S. (2004). Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 66 1257–1265. 10.1111/j.1523-1755.2004.00879.x PubMed DOI

Mujais S., Nolph K., Gokal R., Blake P., Burkart J., Coles G., et al. (2000). Evaluation and management of ultrafiltration problems in peritoneal dialysis. Perit. Dial. Int. 20(Suppl. 4), S5–S21. PubMed

National Kidney Foundation (2006). Clinical Practice Guidelines and Clinical Practice Recommendations 2006 Updates. Available at: http://kidneyfoundation.cachefly.net/professionals/KDOQI/guideline_upHD_PD_VA/pd_guide6.htm. (accessed December 20, 2018).

Rippe B. (2009). Peritoneal angiogenesis in response to dialysis fluid. Contrib. Nephrol. 163 60–66. 10.1159/000223781 PubMed DOI

Schaefer B., Bartosova M., Macher-Goeppinger S., Sallay P., Voros P., Ranchin B., et al. (2018). Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int. 94 419–429. 10.1016/j.kint.2018.02.022 PubMed DOI

Schaefer B., Bartosova M., Macher-Goeppinger S., Ujszaszi A., Wallwiener M., Nyarangi-Dix J., et al. (2016). Quantitative Histomorphometry of the healthy peritoneum. Sci. Rep. 6:21344. 10.1038/srep21344 PubMed DOI PMC

Szeto C. C., Chow K. M., Lam C. W., Leung C. B., Kwan B. C., Chung K. Y., et al. (2007). Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products–a 1-year randomized control trial. Nephrol. Dial. Transplant. 22 552–559. 10.1093/ndt/gfl559 PubMed DOI

van de Luijtgaarden M. W., Jager K. J., Segelmark M., Pascual J., Collart F., Hemke A. C., et al. (2016). Trends in dialysis modality choice and related patient survival in the ERA-EDTA registry over a 20-year period. Nephrol. Dial. Transplant. 31 120–128. 10.1093/ndt/gfv295 PubMed DOI

van Diepen A. T., van Esch S., Struijk D. G., Krediet R. T. (2015). The first peritonitis episode alters the natural course of peritoneal membrane characteristics in peritoneal dialysis patients. Perit. Dial. Int. 35 324–332. 10.3747/pdi.2014.00277 PubMed DOI PMC

Williams J. D., Craig K. J., Topley N., Von Ruhland C., Fallon M., Newman G. R., et al. (2002). Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13 470–479. PubMed

Williams J. D., Topley N., Craig K. J., Mackenzie R. K., Pischetsrieder M., Lage C., et al. (2004). The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66 408–418. 10.1111/j.1523-1755.2004.00747.x PubMed DOI

Yanez-Mo M., Lara-Pezzi E., Selgas R., Ramirez-Huesca M., Dominguez-Jimenez C., Jimenez-Heffernan J. A., et al. (2003). Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348 403–413. 10.1056/NEJMoa020809 PubMed DOI

Ye H., Zhou Q., Fan L., Guo Q., Mao H., Huang F., et al. (2017). The impact of peritoneal dialysis-related peritonitis on mortality in peritoneal dialysis patients. BMC Nephrol. 18:186. 10.1186/s12882-017-0588-4 PubMed DOI PMC

Zemel D., Imholz A. L., de Waart D. R., Dinkla C., Struijk D. G., Krediet R. T. (1994). Appearance of tumor necrosis factor-alpha and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int. 46 1422–1430. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...