MR compatible ergometers for dynamic 31P MRS

. 2019 Jun ; 17 (2) : 91-98. [epub] 20190415

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34907736

Grantová podpora
AZV 15-26906A Ministry of Health of the Czech Republic - Czech Republic
MHCZ-DRO 00023001 Ministry of Health of the Czech Republic - Czech Republic
8J18AT023 Ministry of Education, Youth and Sports - Czech Republic
098436/Z/12/B Royal Society - United Kingdom
2/0001/17 Slovak Grant Agencies VEGA - Slovakia
15-0029 APVV - Slovakia

Magnetic Resonance (MR) compatible ergometers are specialized ergometers used inside the MR scanners for the characterization of tissue metabolism changes during physical stress. They are most commonly used for dynamic phosphorous magnetic resonance spectroscopy (31P MRS), but can also be used for lactate production measurements, perfusion studies using arterial spin labelling or muscle oxygenation measurements by blood oxygen dependent contrast sequences. We will primarily discuss the importance of ergometers in the context of dynamic 31P MRS. Dynamic 31P MRS can monitor muscle fatigue and energy reserve during muscle contractions as well as the dynamics of recuperation of skeletal muscle tissue during the following recovery through signal changes of phosphocreatine (PCr), inorganic phosphate and adenosine triphosphate (ATP). Based on the measured data it is possible to calculate intracellular pH, metabolic flux of ATP through creatine-kinase reaction, anaerobic glycolysis and oxidative phosphorylation and other metabolic parameters as mitochondrial capacity. This review primarily focuses on describing various technical designs of MR compatible ergometers for dynamic 31P MRS that must be constructed with respect to the presence of magnetic field. It is also expected that the construction of ergometers will be easy for the handling and well accepted by examined subjects.

Zobrazit více v PubMed

Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Wang H, Berr SS, et al. (2009). Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol 54(7): 628-635. DOI: 10.1016/j.jacc.2009.01.080. PubMed DOI

Argov Z, Löfberg M, Arnold DL (2000). Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23(9): 1316-1334. DOI: 10.1002/1097-4598(200009)23:93.0.CO;2-I. DOI

Arnold DL, Matthews PM, Radda GK (1984). Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1(3): 307-315. DOI: 10.1002/mrm.1910010303. PubMed DOI

Boss A, Heskamp L, Breukels V, Bains LJ, van Uden MJ, Heerschap A (2018). Oxidative capacity varies along the length of healthy human tibialis anterior. J Physiol 596(8): 1467-1483. DOI: 10.1113/JP275009. PubMed DOI

Chance B, Eleff S, Bank W, Leigh JS, Warnell R (1982). 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci U S A 79(24): 7714-7718. DOI: 10.1073/pnas.79.24.7714. PubMed DOI

Chance B, Eleff S, Leigh JS (1980). Noninvasive, nondestructive approaches to cell bioenergetics. Proc Natl Acad Sci U S A 77(12): 7430-7434. PubMed DOI

Chmelík M, Považan M, Jírů F, Kukurová IJ, Dezortová M, Krššák M, et al. (2014). Flip-angle mapping of 31 P coils by steady-state MR spectroscopic imaging. JMRI 40(2): 391-397. DOI: 10.1002/jmri.24401. PubMed DOI

Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B, et al. (2015). Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes 64(2): 383-392. DOI: 10.2337/db14-0765. PubMed DOI

Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L (2015). Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: A potential mechanism for diastolic dysfunction. Eur Heart J 36(24): 1547-1554. DOI: 10.1093/eurheartj/ehv120. PubMed DOI

Duteil S, Bourrilhon C, Raynaud JS, Wary C, Richardson RS, Leroy-Willig A, et al. (2004). Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study. Am J Physiol Integr Comp Physiol 287(6): R1441-R1449. DOI: 10.1152/ajpregu.00242.2004. PubMed DOI

Francescato MP, Cettolo V (2001). Two-pedal ergometer for in vivo MRS studies of human calf muscles. Magn Reson Med 46(5): 1000-1005. DOI: 10.1002/mrm.1287. PubMed DOI

Goluch S, Kuehne A, Meyerspeer M, Kriegl R, Schmid AI, Fiedler GB, et al. (2015). A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T. Magn Reson Med 73(6): 2376-2389. DOI: 10.1002/mrm.25339. PubMed DOI

González de Suso JM, Bernús G, Alonso J, Alay A, Capdevila A, Gili J, et al. (1993). Development and characterization of an ergometer to study the bioenergetics of the human quadriceps muscle by 31P NMR spectroscopy inside a standard MR scanner. Magn Reson Med 29(4): 575-581. DOI: 10.1002/mrm.1910290425. PubMed DOI

Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, et al. (2006). High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg 43(5): 978-986. DOI: 10.1016/j.jvs.2006.01.020. PubMed DOI

Gussew A, Hiepe P, Rzanny R, Reichenbach JR (2012). Improved reproducibility of dynamic 31P-MRS in the calf muscle during exercise by self-adjusted muscle activity. Biomed Tech 57(SI-1 Track M): 757-760. DOI: 10.1515/bmt-2012-4326. DOI

Gusso S, Salvador C, Hofman P, Cutfield W, Baldi JC, Taberner A, Nielsen P (2012). Design and testing of an MRI-compatible cycleergometer for non-invasive cardiac assessments during exercise. Biomed Eng Online 11: 13. DOI: 10.1186/1475-925X-11-13. PubMed DOI

Hiepe P, Gussew A, Rzanny R, Anders C, Walther M, Scholle H-C, Reichenbach JR (2014). Interrelations of muscle functional MRI, diffusion-weighted MRI and 31P-MRS in exercised lower back muscles. NMR Biomed 27(8): 958-970. DOI: 10.1002/nbm.3141. PubMed DOI

Hosseini Ghomi R, Bredella MA, Thomas BJ, Miller KK, Torriani M (2011). Modular MR-compatible lower leg exercise device for whole-body scanners. Skeletal Radiol 40(10): 1349-1354. DOI: 10.1007/s00256-011-1098-2. PubMed DOI

Itoh M, Iio M, Kawai M, Takizawa O, Yoshikawa K, Minami M (1986). 31P-NMR spectroscopy of myopathies: clinical application of whole-body MR. Radiat Med 4(2): 41-45.

Jeneson JA, Schmitz JP, Hilbers PA, Nicolay K (2009). An MR-compatible bicycle ergometer for in-magnet whole-body human exercise testing. Magn Reson Med 63(1): 257-261. DOI: 10.1002/mrm.22179. PubMed DOI

Jeppesen TD, Quistorff B, Wibrand F, Vissing J (2007). 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy. J Neurol 254(1): 29-37. DOI: 10.1007/s00415-006-0229-5. PubMed DOI

Kemp GJ, Radda GK (1994). Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10(1): 43-63. PubMed

Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ (2015). Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol 213(1): 107-144. DOI: 10.1111/apha.12307. PubMed DOI

Kemp GJ, Meyerspeer M, Moser E (2007). Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed 20(6): 555-565. DOI: 10.1002/nbm.1192. PubMed DOI

Kemp GJ, Roberts N, Bimson WE, Bakran A, Harris PL, Gilling-Smith GL (2001). Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo. J Vasc Surg 34(6): 1103-1110. DOI: 10.1067/mva.2001.117152. PubMed DOI

Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK (1993). Cellular energetics of dystrophic muscle. J Neurol Sci 116(2): 201-206. DOI: 10.1016/0022-510X(93)90326-T. PubMed DOI

Kimura N, Hamaoka T, Kurosawa Y, Katsumura T (2006). Contribution of intramuscular oxidative metabolism to total ATP production during forearm isometric exercise at varying intensities. Tohoku J Exp Med 208(4): 307-320. DOI: 10.1620/tjem.208.307. PubMed DOI

Larson DE, Hesslink RL, Hrovat MI, Fishman RS, Systrom DM (1994). Dietary effects on exercising muscle metabolism and performance by 31P-MRS. J Appl Physiol 77(3): 1108-1115. DOI: 10.1152/jappl.1994.77.3.1108. PubMed DOI

Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef J-P, Perrey S, et al. (2009). Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: A 31P-MRS study. Magn Reson Med 62(4): 840-854. DOI: 10.1002/mrm.22085. PubMed DOI

Layec G, Bringard A, Vilmen C, Micallef JP, Fur Y, Perrey S, et al. (2008). Accurate work-rate measurements during in vivo MRS studies of exercising human quadriceps. Magn Reson Mater Physics Biol Med 21(3): 227-235. DOI: 10.1007/s10334-008-0117-3. PubMed DOI

Le TT, Bryant JA, Ting AE, Ho PY, Su B, Teo RC, et al. (2017). Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance. J Cardiovasc Magn Reson 19(7) 1-10. DOI: 10.1186/s12968-017-0322-1. PubMed DOI

Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, et al. (2016). Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 37(46): 3461-3469. DOI: 10.1093/eurheartj/ehv442. PubMed DOI

Lodi R, Kemp GJ, Muntoni F, Thompson CH, Rae C, Taylor J, et al. (1999). Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain 122(Pt 1): 121-130. PubMed DOI

Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992). Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85(4): 1364-1373. DOI: 10.1161/01.CIR.85.4.1364. PubMed DOI

Mattei JP, Bendahan D, Cozzone P (2004). P-31 Magnetic Resonance Spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56(1): 9-14. DOI: 10.4081/reumatismo.2004.9. PubMed DOI

Mayhew JL, Johnson BD, LaMonte MJ, Lauber D, Kemmler W (2008). Accuracy of prediction equations for determining one repetition maximum bench press in women before and after resistance training. J Strength Cond Res 22(5): 1570-1577. DOI: 10.1519/JSC.0b013e31817b02ad. PubMed DOI

Meyerspeer M, Krššák M, Kemp GJ, Roden M, Moser E (2005). Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig. Magn Reson Mater Physics Biol Med 18(5): 257-262. DOI: 10.1007/s10334-005-0014-y. PubMed DOI

Minotti JR, Johnson EC, Hudson TL, Sibbitt RR, Wise LE, Fukushima E, Icenogle MV (1989). Forearm metabolic asymmetry detected by 31P-NMR during submaximal exercise. J Appl Physiol 67(1): 324-329. DOI: 10.1152/jappl.1989.67.1.324. PubMed DOI

Moll K, Gussew A, Nisser M, Derlien S, Krämer M, Reichenbach JR (2018). Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice 31P-MR spectroscopic sequence. NMR Biomed 31(4): e3889. DOI: 10.1002/nbm.3889. PubMed DOI

Naimon ND, Walczyk J, Babb JS, Khegai O, Che X, Alon L, et al. (2017). A low-cost Mr compatible ergometer to assess post-exercise phosphocreatine recovery kinetics.MAGMA 30(3): 281-289. DOI: 10.1007/s10334-016-0605-9. PubMed DOI

Niess F, Fiedler GB, Schmid AI, Goluch S, Kriegl R, Wolzt M, et al. (2017). Interleaved multivoxel (31) P MR spectroscopy. Magn Reson Med 77(3): 921-927. DOI: 10.1002/mrm.26172. PubMed DOI

Niess F, Fiedler GB, Schmid AI, Laistler E, Frass-Kriegl R, Wolzt M, et al. (2018). Dynamic multivoxel-localized 31P MRS during plantar flexion exercise with variable knee angle. NMR Biomed 31(6): e3905. DOI: 10.1002/nbm.3905. PubMed DOI

Nishida A, Kubo K, Nihei H (1991). Impaired muscle energy metabolism in uremia as monitored by 31P-NMR. Nihon Jinzo Gakkai Shi 33(1): 65-73. PubMed

Quistorff B, Nielsen S, Thomsen C, Jensen KE, Henriksen O (1990). A simple calf muscle ergometer for use in a standard whole-body MR scanner. Magn Reson Med 13(3): 444-449. DOI: 10.1002/mrm.1910130311. PubMed DOI

Raymer GH, Allman BL, Rice CL, Marsh GD, Thompson RT (2006). Characteristics of a MR-compatible ankle exercise ergometer for a 3.0 T head-only MR scanner. Med Eng Phys 28(5): 489-494. DOI: 10.1016/j.medengphy.2005.07.021. PubMed DOI

Rodenburg JB, de Boer RW, Jeneson JA, van Echteld CJ, Bar PR (1994). 31P-MRS and simultaneous quantification of dynamic human quadriceps exercise in a whole body MR scanner. J Appl Physiol 77(2): 1021-1029. DOI: 10.1152/jappl.1994.77.2.1021. PubMed DOI

Ryschon TW, Fowler MD, Arai AA, Wysong RE, Leighton SB, Clem TR, Balaban RS (1995). A multimode dynamometer for in vivo MRS studies of human skeletal muscle. J Appl Physiol 79(6): 2139-2147. DOI: 10.1152/jappl.1995.79.6.2139. PubMed DOI

Sairyo K, Iwanaga K, Yoshida N, Mishiro T, Terai T, Sasa T, Ikata T (2003). Effects of active recovery under a decreasing work load following intense muscular exercise on intramuscular energy metabolism. Int J Sports Med 24(3): 179-182. DOI: 10.1055/s-2003-39091. PubMed DOI

Schaefer LV, Bittmann FN (2017). Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function. BMC Sports Sci Med Rehabil 9: 11. DOI: 10.1186/s13102-017-0075-z. PubMed DOI

Schmid AI, Schewzow K, Fiedler GB, Goluch S, Laistler E, Wolzt M, et al. (2014). Exercising calf muscle T2* changes correlate with pH, PCr recovery and maximum oxidative phosphorylation. NMR Biomed 27(5): 553-560. DOI: 10.1002/nbm.3092. PubMed DOI

Šedivý P, Kipfelsberger MC, Dezortová M, Krššák M, Drobný M, Chmelík M, et al. (2015). Dynamic 31 P MR spectroscopy of plantar flexion: Influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med Phys 42(4): 1678-1689. DOI: 10.1118/1.4914448. PubMed DOI

Sinha S, Shin DD, Hodgson JA, Kinugasa R, Edgerton VR (2012). Computer-controlled, MR-compatible foot-pedal device to study dynamics of the muscle tendon complex under isometric, concentric, and eccentric contractions. J Magn Reson Imaging 36(2): 498-504. DOI: 10.1002/jmri.23617. PubMed DOI

Slade JM, Towse TF, Delano MC, Wiseman RW, Meyer RA (2006). A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle. NMR Biomed 19(5): 573-580. DOI: 10.1002/nbm.1037. PubMed DOI

Sleigh A, Lupson V, Thankamony A, Dunger DB, Savage DB, Carpenter TA, Kemp GJ (2016). Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using (31)P magnetic resonance spectroscopy. Sci Rep 6: 19057. DOI: 10.1038/srep19057. PubMed DOI

Táborský P, Sotorník I, Kaslíková J, Schück O, Hájek M, Horská A (1993). 31P magnetic resonance spectroscopy investigation of skeletal muscle metabolism in uraemic patients. Nephron 65(2): 222-226. DOI: 10.1159/000187478. PubMed DOI

Tschiesche K, Rothamel M, Rzanny R, Gussew A, Hiepe P, Reichenbach JR (2014). MR-compatible pedal ergometer for reproducible exercising of the human calf muscle. Med Eng Phys 36(7): 933-937. DOI: 10.1016/j.medengphy.2014.02.026. PubMed DOI

Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, et al. (2014). Depth-resolved surface coil MRS (DRESS)-localized dynamic 31P-MRS of the exercising human gastrocnemius muscle at 7 T. NMR Biomed 27(11): 1346-1352. DOI: 10.1002/nbm.3196. PubMed DOI

Valkovič L, Chmelík M, Krššák M (2017a). In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 529: 193-215. DOI: 10.1016/j.ab.2017.01.018. PubMed DOI

Valkovič L, Dragonu I, Almujayyaz S, Batzakis A, Young LA, Purvis LA, et al. (2017b). Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T. PLoS One 1: e0187153. DOI: 10.1371/journal.pone.0187153. PubMed DOI

Valkovič L, Chmelík M, Meyerspeer M, Gagoski B, Rodgers CT, Krššák M (2016). Dynamic 31P-MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T. NMR Biomed 29(12): 1825-1834. DOI: 10.1002/nbm.3662. PubMed DOI

Valkovič L, Ukropcová B, Chmelík M, Baláž M, Bogner W, Schmid AI, et al. (2013). Interrelation of 31P-MRS metabolism measurements in resting and exercised quadriceps muscle of overweight-to-obese sedentary individuals. NMR Biomed 26(12): 1714-1722. DOI: 10.1002/nbm.3008. PubMed DOI

Vanderthommen M, Gilles R, Carlier P, Ciancabilla F, Zahlan O, Sluse F, Crielaard J (1999). Human muscle energetics during voluntary and electrically induced isometric contractions as measured by 31P NMR spectroscopy. Int J Sports Med 20(5): 279-283. DOI: 10.1055/s-2007-971131. PubMed DOI

Wary C, Nadaj-Pakleza A, Laforêt P, Claeys KG, Carlier R, Monnet A, et al. (2010). Investigating glycogenosis type III patients with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul Disord 20(8): 548-558. DOI: 10.1016/j.nmd.2010.06.011. PubMed DOI

Whipp BJ, Rossiter HB, Ward SA, Avery D, Doyle VL, Howe FA, Griffiths JR (1999). Simultaneous determination of muscle 31P and O2 uptake kinetics during whole body NMR spectroscopy. J Appl Physiol 86(2): 742-747. DOI: 10.1152/jappl.1999.86.2.742. PubMed DOI

Wilson JR, McCully KK, Mancini DM, Boden B, Chance B (1988). Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study. J Appl Physiol 64(6): 2333-2339. DOI: 10.1152/jappl.1988.64.6.2333. PubMed DOI

Zatina MA, Berkowitz HD, Gross GM, Maris JM, Chance B (1986). 31P nuclear magnetic resonance spectroscopy: noninvasive biochemical analysis of the ischemic extremity. J Vasc Surg 3(3): 411-420. DOI: 10.1016/0741-5214(86)90103-5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...