31 P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
K99 HL125756
NHLBI NIH HHS - United States
MR/P020941/1
Medical Research Council - United Kingdom
PubMed
32037688
PubMed Central
PMC8243949
DOI
10.1002/nbm.4246
Knihovny.cz E-zdroje
- Klíčová slova
- 31P, MRI, exercise, metabolism, muscle, nuclear magnetic resonance spectroscopy, phosphorus MRS,
- Publikační typ
- časopisecké články MeSH
Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.
Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
Cognitive Neuroscience Center University Medical Center Groningen Groningen the Netherlands
DBMR and DIPR University and Inselspital Bern Switzerland
Department of Kinesiology University of Massachusetts Amherst MA USA
Department of Physical Therapy University of Florida Gainesville Florida USA
Department of Radiology Amsterdam University Medical Center|site AMC Amsterdam the Netherlands
Department of Radiology University Medical Center Utrecht the Netherlands
Duchenne Center The Netherlands
High Field MR Center Medical University of Vienna Vienna Austria
Institute for Applied Life Sciences University of Massachusetts Amherst MA USA
NMR Laboratory Neuromuscular Investigation Center Institute of Myology AIM CEA Paris France
Norwich Medical School University of East Anglia Norwich UK
Wellcome Trust MRC Institute of Metabolic Science University of Cambridge Cambridge UK
Wolfson Brain Imaging Centre University of Cambridge Cambridge UK
Zobrazit více v PubMed
Chance B, Im J, Nioka S, Kushmerick M. Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR Biomed. 2006;19(7):904‐926. PubMed
Meyer RA, Brown TR, Kushmerick MJ. Phosphorus nuclear magnetic resonance of fast‐ and slow‐twitch muscle. Am J Physiol. 1985;248(3 Pt 1):C279‐C287. PubMed
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447‐1531. PubMed
Glancy B, Hartnell LM, Malide D, et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015;523(7562):617‐620. PubMed PMC
Lanza IR, Wigmore DM, Befroy DE, Kent‐Braun JA. In vivo ATP production during free‐flow and ischaemic muscle contractions in humans. J Physiol. 2006;577:353‐367. PubMed PMC
Kemper WF, Lindstedt SL, Hartzler LK, Hicks JW, Conley KE. Shaking up glycolysis: sustained, high lactate flux during aerobic rattling. Proc Natl Acad Sci U S A. 2001;98(2):723‐728. PubMed PMC
Diekman EF, Visser G, Schmitz JP, et al. Altered energetics of exercise explain risk of rhabdomyolysis in very long‐chain acyl‐CoA dehydrogenase deficiency. PLoS ONE. 2016;11(2):e0147818. PubMed PMC
Jeneson JA, van Dobbenburgh JO, van Echteld CJ, et al. Experimental design of 31P MRS assessment of human forearm muscle function: restrictions imposed by functional anatomy. Magn Reson Med. 1993;30(5):634‐640. PubMed
Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol. 1993;465:203‐222. PubMed PMC
Chance B, Leigh JS Jr, Clark BJ, et al. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady‐state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985;82(24):8384‐8388. PubMed PMC
Vicini P, Kushmerick MJ. Cellular energetics analysis by a mathematical model of energy balance: estimation of parameters in human skeletal muscle. Am J Physiol Cell Physiol. 2000;279(1):C213‐C224. PubMed
Meyer RA. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol. 1988;254(4 Pt 1):C548‐C553. PubMed
Jeneson JA, Westerhoff HV, Brown TR, Van Echteld CJ, Berger R. Quasi‐linear relationship between Gibbs free energy of ATP hydrolysis and power output in human forearm muscle. Am J Physiol. 1995;268(6 Pt 1):C1474‐C1484. PubMed
Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf). 2015;213(1):107‐144. PubMed
Calderon JC, Bolanos P, Caputo C. The excitation‐contraction coupling mechanism in skeletal muscle. Biophys Rev. 2014;6(1):133‐160. PubMed PMC
Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287‐332. PubMed
Kent‐Braun JA, Fitts RH, Christie A. Skeletal muscle fatigue. Compr Physiol. 2012;2:997‐1044. PubMed
Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature. 1978;274(5674):861‐866. PubMed
Meyer RA, Kuchmerick MJ, Brown TR. Application of 31P‐NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol. 1982;242(1):C1‐C11. PubMed
Foley JM, Meyer RA. Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR. NMR Biomed. 1993;6(1):32‐38. PubMed
Fiedler GB, Schmid AI, Goluch S, et al. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P‐MRS during exercise and recovery. Sci Rep. 2016;6:32037. PubMed PMC
Conley KE, Blei ML, Richards TL, Kushmerick MJ, Jubrias SA. Activation of glycolysis in human muscle in vivo. Am J Physiol. 1997;273(1 Pt 1):C306‐C315. PubMed
Crowther GJ, Carey MF, Kemper WF, Conley KE. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol Endocrinol Metab. 2002;282(1):E67‐E73. PubMed
Lambeth MJ, Kushmerick MJ. A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng. 2002;30(6):808‐827. PubMed
Schmitz JP, Groenendaal W, Wessels B, et al. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Am J Physiol Cell Physiol. 2013;304(2):C180‐C193. PubMed PMC
Kemp GJ, Roussel M, Bendahan D, Le Fur Y, Cozzone PJ. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy. J Physiol. 2001;535(Pt 3):901‐928. PubMed PMC
Kemp GJ. Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R895‐R901. author reply R904–910 PubMed
Kemp GJ, Boning D, Beneke R, Maassen N. Explaining pH change in exercising muscle: lactic acid, proton consumption, and buffering vs. strong ion difference. Am J Physiol Regul Integr Comp Physiol. 2006;291(1):R235‐R237. author reply R238–239 PubMed
Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed. 2007;20(6):555‐565. PubMed
Ernst RR, Anderson WA. Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum. 1966;37(1):93‐102.
de Graaf RA. In vivo NMR. Spectroscopy. 2019;550.
Meyerspeer M, Krššák M, Moser E. Relaxation times of 31P‐metabolites in human calf muscle at 3 T. Magn Reson Med. 2003;49(4):620‐625. PubMed
Bogner W, Chmelík M, Schmid AI, Moser E, Trattnig S, Gruber S. Assessment of 31P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med. 2009;62(3):574‐582. PubMed
Meyerspeer M, Scheenen T, Schmid AI, Mandl T, Unger E, Moser E. Semi‐LASER localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at ultra‐high magnetic field. Magn Reson Med. 2011;65(5):1207‐1215. PubMed PMC
Nabuurs C, Huijbregts B, Wieringa B, Hilbers CW, Heerschap A. 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle. J Biol Chem. 2010;285:39588‐39596. PubMed PMC
Luyten PR, Bruntink G, Sloff FM, et al. Broadband proton decoupling in human 31P NMR spectroscopy. NMR Biomed. 1989;1:177‐183. PubMed
Hooijmans MT, Niks EH, Burakiewicz J, Verschuuren JJGM, Webb AG, Kan HE. Elevated phosphodiester and T 2 levels can be measured in the absence of fat infiltration in Duchenne muscular dystrophy patients. NMR Biomed. 2017;30: e3667. PubMed
Wokke BH, Hooijmans MT, van den Bergen JC, Webb AG, Verschuuren JJ, Kan HE. Muscle MRS detects elevated PDE/ATP ratios prior to fatty infiltration in Becker muscular dystrophy. NMR Biomed. 2014;27(11):1371‐1377. PubMed
Niess F, Fiedler GB, Schmid AI, et al. Dynamic multivoxel‐localized 31P MRS during plantar flexion exercise with variable knee angle. NMR Biomed. 2018;31(6):e3905. PubMed PMC
Boss A, Heskamp L, Breukels V, Bains LJ, van Uden MJ, Heerschap A. Oxidative capacity varies along the length of healthy human tibialis anterior. J Physiol. 2018;596:1467‐1483. PubMed PMC
Hooijmans MT, Doorenweerd N, Baligand C, et al. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24‐month follow‐up. PLoS ONE. 2017;12:1‐15. PubMed PMC
Kan HE, Klomp DW, Wohlgemuth M, et al. Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR Biomed. 2010;23(6):563‐568. PubMed
Edgerton VR, Smith JL, Simpson DR. Muscle fibre type populations of human leg muscles. Histochem J. 1975;7(3):259‐266. PubMed
Meyerspeer M, Robinson S, Nabuurs CI, et al. Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7T. Magn Reson Med. 2012;68:1713‐1723. PubMed PMC
Valkovič L, Chmelík M, Just Kukurová I, et al. Depth‐resolved surface coil MRS (DRESS)‐localized dynamic 31P‐MRS of the exercising human gastrocnemius muscle at 7 T. NMR Biomed. 2014;27(11):1346‐1352. PubMed
Slade JM, Towse TF, Delano MC, Wiseman RW, Meyer RA. A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle. NMR Biomed. 2006;19(5):573‐580. PubMed
Schmid AI, Meyerspeer M, Robinson SD, et al. Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using 31P gradient‐Echo MRI at 7 tesla. Magn Reson Med. 2016;75:2324‐2331. PubMed
Reyngoudt H, Lopez Kolkovsky AL, Carlier PG. Free intramuscular Mg2+ calculated using both 31P and 1H NMRS‐based pH in skeletal muscle of Duchenne muscular dystrophy patients. NMR Biomed. 2019;e4115. PubMed
Wary C, Azzabou N, Giraudeau C, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed. 2015;28:1150‐1162. PubMed
Kan HE, Klomp DWJ, Wong CS, et al. In vivo 31P MRS detection of an alkaline inorganic phosphate pool with short T 1 in human resting skeletal muscle. NMR Biomed. 2010;23:995‐1000. PubMed PMC
Scheenen TWJ, Klomp DWJ, Wijnen JP, Heerschap A. Short echo time 1H‐MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008;59:1‐6. PubMed
Bottomley PA. Measuring biochemical reaction rates in vivo with magnetization transfer. eMagRes. 2016;5:843‐858.
Buehler T, Kreis R, Boesch C. Comparison of 31P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils. NMR Biomed. 2015;28:188‐199. PubMed
Sleigh A, Savage DB, Williams GB, et al. 31P magnetization transfer measurements of pi→ATP flux in exercising human muscle. J Appl Physiol. 2016;120:649‐656. PubMed PMC
Tušek Jelenc M, Chmelík M, Bogner W, Krššák M, Trattnig S, Valkovič L. Feasibility and repeatability of localized 31P‐MRS four‐angle saturation transfer (FAST) of the human gastrocnemius muscle using a surface coil at 7T. NMR Biomed. 2016;29:57‐65. PubMed PMC
Balaban RS, Koretsky AP. Interpretation of 31P NMR saturation transfer experiments: what you can't see might confuse you. Focus on standard magnetic resonance‐based measurements of the Pi → ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles. Am J Physiol Cell Physiol. 2011;301:12‐15. PubMed PMC
Nabuurs CI, Hilbers CW, Wieringa B, Heerschap A. Letter to the editor: “Interpretation of 31P NMR saturation transfer experiments: do not forget the spin relaxation properties”. Am J Physiol Cell Physiol. 2012. PubMed
Kemp GJ, Brindle KM. What do magnetic resonance‐based measurements of Pi→ATP flux tell us about skeletal muscle metabolism? Diabetes. 2012;61(8):1927‐1934. PubMed PMC
Pouymayou B, Buehler T, Kreis R, Boesch C. Test–retest analysis of multiple 31P magnetization exchange pathways using asymmetric adiabatic inversion. Magn Reson Med. 2017;78:33‐39. PubMed
Ren J, Sherry AD, Malloy CR. Amplification of the effects of magnetization exchange by 31P band inversion for measuring adenosine triphosphate synthesis rates in human skeletal muscle. Magn Reson Med. 2015;74:1505‐1514. PubMed PMC
Ren J, Sherry AD, Malloy CR. Modular 31P wideband inversion transfer for integrative analysis of adenosine triphosphate metabolism, T 1 relaxation and molecular dynamics in skeletal muscle at 7T. Magn Reson Med. 2019;81:3440‐3452. PubMed PMC
Naressi A, Couturier C, Devos J, et al. Java‐based graphical user interface for the MRUI quantitation package. Magn Reson Mater Phy. 2001;12(2–3):141‐152. PubMed
Purvis LA, Clarke WT, Biasiolli L, Valkovič L, Robson MD, Rodgers CT. OXSA: an open‐source magnetic resonance spectroscopy analysis toolbox in MATLAB. PLoS ONE. 2017;12(9):e0185356. PubMed PMC
Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672‐679. PubMed
Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC. A constrained least‐squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn Reson Med. 2011;65(1):1‐12. PubMed
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35‐43. PubMed
Kreis R. The trouble with quality filtering based on relative Cramér‐Rao lower bounds. Magn Reson Med. 2016;75(1):15‐18. PubMed
Buchli R, Boesiger P. Comparison of methods for the determination of absolute metabolite concentrations in human muscles by 31P MRS. Magn Reson Med. 1993;30(5):552‐558. PubMed
Barantin L, Le Pape A, Akoka S. A new method for absolute quantitation of MRS metabolites. Magn Reson Med. 1997;179‐182. PubMed
Marro KI, Lee D, Shankland EG, et al. Synthetic signal injection using inductive coupling. J Magn Reson. 2008;194:67‐75. PubMed PMC
El‐Sharkawy AM, Gabr RE, Schar M, Weiss RG, Bottomley PA. Quantification of human high‐energy phosphate metabolite concentrations at 3 T with partial volume and sensitivity corrections. NMR Biomed. 2013;26(11):1363‐1371. PubMed PMC
Harris R, Edwards R, Hultman E, Nordesjö L, Nylind B, Sahlin K. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1976;367(2):137‐142. PubMed
Arsac LM, Thiaudiere E, Diolez P, Gerville‐Réache L. Parameter estimation in modeling phosphocreatine recovery in human skeletal muscle. Eur J Appl Physiol. 2004;91(4):419‐424. PubMed
Forbes SC, Slade JM, Francis RM, Meyer RA. Comparison of oxidative capacity among leg muscles in humans using gated 31P 2‐D chemical shift imaging. NMR Biomed. 2009;22:1063‐1071. PubMed
Ferrari M, Muthalib M, Quaresima V. The use of near‐infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Transact A Math Phys Eng Sci. 2011;369:1‐14. PubMed
Bendahan D, Chatel B, Jue T. Comparative NMR and NIRS analysis of oxygen‐dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol. 2017;313(6):R740‐R753. PubMed PMC
Tran TK, Sailasuta N, Kreutzer U, et al. Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol. 1999;276:R1682‐R1690. PubMed
Davis ML, Barstow TJ. Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy. Respir Physiol Neurobiol. 2013;186(2):180‐187. PubMed
Forbes SC, Kowalchuk JM, Thompson RT, Marsh GD. Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate‐intensity plantar flexion exercise. J Appl Physiol. 2007;102:1565‐1573. PubMed
Kent‐Braun JA, Sharma KR, Weiner MW, Massie B, Miller RG. Central basis of muscle fatigue in chronic fatigue syndrome. Neurology. 1993;43:125‐131. PubMed
Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labelling. Magn Reson Med. 1999;42:258‐267. PubMed
Lebon V, Brillault‐Salvat C, Bloch G, Leroy‐Willig A, Carlier PG. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient‐echo NMRI and myoglobin NMRS during leg ischemia. Magn Reson Med. 1998;40:551‐558. PubMed
Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y. Muscle blood flow and oxygenation measured by NMR. NMR Biomed. 2006;954‐967. PubMed
Schmid AI, Schewzow K, Fiedler GB, et al. Exercising calf muscle T 2 * changes correlate with pH, PCr recovery and maximum oxidative phosphorylation. NMR Biomed. 2014;27:553‐560. PubMed PMC
Towse TF, Slade JM, Ambrose JA, DeLano MC, Meyer RA. Quantitative analysis of the postcontractile blood‐oxygenation‐level‐dependent (BOLD) effect in skeletal muscle. J Appl Physiol. 2011;111:27‐39. PubMed PMC
Bakermans AJ, Wessel CH, Zheng KH, Groot PFC, Stroes ESG, Nederveen AJ. Dynamic magnetic resonance measurements of calf muscle oxygenation and energy metabolism in peripheral artery disease. J Magn Reson Imaging. 2019;1‐10. PubMed PMC
Brillault‐Salvat C, Giacomini E, Wary C, et al. An interleaved heteronuclear NMRI‐NMRS approach to non‐invasive investigation of exercising human skeletal muscle. Cell Mol Biol (Noisy‐le‐Grand). 1997;43:751‐762. PubMed
Wray DW, Nishiyama SK, Monnet A, et al. Multiparametric NMR‐based assessment of skeletal muscle perfusion and metabolism during exercise in elderly persons: preliminary findings. J Gerontol A Biol Sci Med Sci. 2009;64:968‐974. PubMed PMC
Niess F, Schmid AI, Bogner W, et al. Interleaved 31P MRS/1H ASL for analysis of metabolic and functional heterogeneity along human lower leg muscles at 7T. Magn Reson Med. 2019; in press. 10.1002/mrm.28088 PubMed DOI PMC
Duteil S, Bourrilhon C, Raynaud JS, et al. Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1441‐R1449. PubMed
Meyerspeer M, Kemp GJ, Mlynárik V, et al. Direct noninvasive quantification of lactate and high energy phosphates simultaneously in exercising human skeletal muscle by localized magnetic resonance spectroscopy. Magn Reson Med. 2007;57:654‐660. PubMed PMC
Lopez Kolkovsky AL, Reyngoudt H, Giacomini E, Niess F, Meyerspeer M, Carlier PG. pH evaluation in the exercising muscle by interleaved localized NMR spectroscopy of carnosine and inorganic phosphate. Paper presented at: 34th ESMRMB annual scientific meeting 2017; Barcelona, Spain
Meyerspeer M, Magill AW, Kuehne A, Gruetter R, Moser E, Schmid AI. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner. Magn Reson Med. 2016;76:1636‐1641. PubMed PMC
Parasoglou P, Xia D, Chang G, Regatte RR. Dynamic three‐dimensional imaging of phosphocreatine recovery kinetics in the human lower leg muscles at 3T and 7T: a preliminary study. NMR Biomed. 2013;26(3):348‐356. PubMed PMC
Šedivý P, Kipfelsberger MC, Dezortová M, et al. Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF‐coil design. Med Phys. 2015;42:1678‐1689. PubMed
Šedivý P, Dezortová M, Rydlo J, et al. MR compatible ergometers for dynamic 31P MRS. J Appl Biomed. 2019;17:91‐98. PubMed
Jeneson JAL, Bruggeman FJ. Robust homeostatic control of quadriceps pH during natural locomotor activity in man. FASEB J. 2004;18:1010‐1012. PubMed
Hoppeler H, Herzog W. Eccentric exercise: many questions unanswered. J Appl Physiol. 2014;116:1405‐1406. PubMed
Ryschon TW, Fowler MD, Wysong RE, Anthony A, Balaban RS. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. J Appl Physiol. 1997;83:867‐874. PubMed
Marsh GD, Paterson DH, Thompson RT, Driedger AA. Coincident thresholds in intracellular phosphorylation potential and pH during progressive exercise. J Appl Physiol. 1991;71(3):1076‐1081. PubMed
Larsen RG, Callahan DM, Foulis SA, Kent‐Braun JA. Age‐related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl Physiol Nutr Metab. 2012;37:88‐99. PubMed PMC
Walter G, Vandenborne K, McCully KK, Leigh JS. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Physiol. 1997;272(2 Pt 1):C525‐C534. PubMed
Quistorff B, Johansen L, Sahlin K. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochem J. 1993;291:681‐686. PubMed PMC
Layec G, Bringard A, Le Fur Y, et al. Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: a 31P‐MRS study. Magn Reson Med. 2009;62(4):840‐854. PubMed
Crow MT, Kushmerick MJ. Chemical energetics of slow‐ and fast‐twitch muscles of the mouse. J Gen Physiol. 1982;79:147‐166. PubMed PMC
Kemp GJ. Muscle Studies by 31P MRS. In: eMagRes. Vol.4 John Wiley & Sons, Ltd; 2015:525‐534.
Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A. 1992;89(16):7521‐7525. PubMed PMC
Takahashi H, Kuno SY, Katsuta S, et al. Relationships between fiber composition and NMR measurements in human skeletal muscle. NMR Biomed. 1996;9(1):8‐12. PubMed
Taylor DJ, Kemp GJ, Radda GK. Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci. 1994;127(2):198‐206. PubMed
Heerschap A, den Hollander JA, Reynen H, Goris RJ. Metabolic changes in reflex sympathetic dystrophy: a 31P NMR spectroscopy study. Muscle Nerve. 1993;16(4):367‐373. PubMed
Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK. Cellular energetics of dystrophic muscle. J Neurol Sci. 1993;116(2):201‐206. PubMed
Jubrias SA, Bennett RM, Klug GA. Increased incidence of a resonance in the phosphodiester region of 31P nuclear magnetic resonance spectra in the skeletal muscle of fibromyalgia patients. Arthritis Rheum. 1994;37(6):801‐807. PubMed
Sastrustegui J, Berkowitz H, Boden B, et al. An in vivo phosphorus nuclear magnetic resonance study of the variations with age in the phosphodiester content of human muscle. Mech Ageing Dev. 1988;42:105‐114. PubMed
Argov Z, Lofberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve. 2000;23(9):1316‐1334. PubMed
Paganini AT, Foley JM, Meyer RA. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Physiol. 1997;272(2 Pt 1):C501‐C510. PubMed
Larson‐Meyer DE, Newcomer BR, Hunter GR, Hetherington HP, Weinsier RL. 31P MRS measurement of mitochondrial function in skeletal muscle: reliability, force‐level sensitivity and relation to whole body maximal oxygen uptake. NMR Biomed. 2000;13(1):14‐27. PubMed
McCully KK, Fielding RA, Evans WJ, Leigh JS Jr, Posner JD. Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol. 1993;75(2):813‐819. PubMed
Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol. 2003;553(Pt 2):589‐599. PubMed PMC
Layec G, Malucelli E, Le Fur Y, et al. Effects of exercise‐induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR Biomed. 2013;26(11):1403‐1411. PubMed
van den Broek NM, De Feyter HM, de Graaf L, Nicolay K, Prompers JJ. Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Am J Physiol Cell Physiol. 2007;293(1):C228‐C237. PubMed
Kent JA, Fitzgerald LF. In vivo mitochondrial function in aging skeletal muscle: capacity, flux, and patterns of use. J Appl Physiol. 2016;121:996‐1003. PubMed
Kemp GJ. Mitochondrial dysfunction in chronic ischemia and peripheral vascular disease. Mitochondrion. 2004;4(5–6):629‐640. PubMed
Layec G, Haseler LJ, Trinity JD, et al. Mitochondrial function and increased convective O2 transport: implications for the assessment of mitochondrial respiration in vivo. J Appl Physiol (1985). 2013;115(6):803‐811. PubMed PMC
Haseler LJ, Lin A, Hoff J, Richardson RS. Oxygen availability and PCr recovery rate in untrained human calf muscle: evidence of metabolic limitation in normoxia. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R2046‐R2051. PubMed
Payen JF, Wuyam B, Levy P, et al. Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia. Am Rev Respir Dis. 1993;147(3):592‐598. PubMed
Kemp GJ, Tonon C, Malucelli E, et al. Cytosolic pH buffering during exercise and recovery in skeletal muscle of patients with McArdle's disease. Eur J Appl Physiol. 2009;105(5):687‐694. PubMed
Park JH, Brown RL, Park CR, et al. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise. Proc Natl Acad Sci U S A. 1987;84(24):8976‐8980. PubMed PMC
Vandenborne K, McCully K, Kakihira H, et al. Metabolic heterogeneity in human calf muscle during maximal exercise. Proc Natl Acad Sci U S A. 1991;88(13):5714‐5718. PubMed PMC
Houtman CJ, Heerschap A, Zwarts MJ, Stegeman DF. pH heterogeneity in tibial anterior muscle during isometric activity studied by 31P‐NMR spectroscopy. J Appl Physiol. 2017;91:191‐200. PubMed
Befroy DE, Falk Petersen K, Rothman DL, Shulman GI. Assessment of in vivo mitochondrial metabolism by magnetic resonance spectroscopy. Methods Enzymol. 2009;457:373‐393. PubMed PMC
Schmid AI, Schrauwen‐Hinderling VB, Andreas M, Wolzt M, Moser E, Roden M. Comparison of measuring energy metabolism by different 31P‐ magnetic resonance spectroscopy techniques in resting, ischemic, and exercising muscle. Magn Reson Med. 2012;67:898‐905. PubMed
Wary C, Naulet T, Thibaud JL, Monnet A, Blot S, Carlier PG. Splitting of Pi and other 31P NMR anomalies of skeletal muscle metabolites in canine muscular dystrophy. NMR Biomed. 2012;25:1160‐1169. PubMed
Conley KE, Ali AS, Flores B, Jubrias SA, Shankland EG. Mitochondrial NAD(P)H in vivo: identifying natural indicators of oxidative phosphorylation in the 31P magnetic resonance spectrum. Front Physiol. 2016;7:45. PubMed PMC
Moon RB, Richards JH. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973;248(20):7276‐7278. PubMed
Lüthi D, Günzel D, McGuigan JAS. Mg‐ATP binding: its modification by spermine, the relevance to cytosolic Mg2+ buffering, changes in the intracellular ionized Mg2+ concentration and the estimation of Mg2+ by 31P‐NMR. Exp Physiol 1999. PubMed
Halvorson HR, Vande Linde AMQ, Helpern JA, Welch KMA. Assessment of magnesium concentrations by 31P NMR in vivo. NMR Biomed. 1992;5:53‐58. PubMed
Rodgers CT, Clarke WT, Snyder C, Vaughan JT, Neubauer S, Robson MD. Human cardiac 31P magnetic resonance spectroscopy at 7 tesla. Magn Reson Med. 2014;72:304‐315. PubMed PMC
Wiseman RW, Kushmerick MJ. Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. 31P NMR studies using creatine analogs. J Biol Chem. 1996;270:12428‐12438. PubMed
Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle
Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence?