In Vitro 31P MR Chemical Shifts of In Vivo-Detectable Metabolites at 3T as a Basis Set for a Pilot Evaluation of Skeletal Muscle and Liver 31P Spectra with LCModel Software
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu hodnotící studie, časopisecké články
Grantová podpora
8J18AT023
Ministry of Education Youth and Sports
CZ08/2018
Austrian Ministry for Science, Research and Economy
DRO ("Institute for Clinical and Experimental Medicine - IKEM, IN 00023001")
Ministry of Health, Czech Republic
PubMed
34946652
PubMed Central
PMC8703310
DOI
10.3390/molecules26247571
PII: molecules26247571
Knihovny.cz E-zdroje
- Klíčová slova
- 31P MRS, LCModel, in vivo MR spectroscopy, liver, muscle,
- MeSH
- adenosindifosfát metabolismus MeSH
- adenosintrifosfát metabolismus MeSH
- fosfatidylcholiny metabolismus MeSH
- fosfatidylethanolaminy metabolismus MeSH
- fosfáty metabolismus MeSH
- fosfor metabolismus MeSH
- játra metabolismus MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- pilotní projekty MeSH
- software * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- adenosindifosfát MeSH
- adenosintrifosfát MeSH
- fosfatidylcholiny MeSH
- fosfatidylethanolaminy MeSH
- fosfáty MeSH
- fosfor MeSH
Most in vivo 31P MR studies are realized on 3T MR systems that provide sufficient signal intensity for prominent phosphorus metabolites. The identification of these metabolites in the in vivo spectra is performed by comparing their chemical shifts with the chemical shifts measured in vitro on high-field NMR spectrometers. To approach in vivo conditions at 3T, a set of phantoms with defined metabolite solutions were measured in a 3T whole-body MR system at 7.0 and 7.5 pH, at 37 °C. A free induction decay (FID) sequence with and without 1H decoupling was used. Chemical shifts were obtained of phosphoenolpyruvate (PEP), phosphatidylcholine (PtdC), phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), glycerophosphoetanolamine (GPE), uridine diphosphoglucose (UDPG), glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), 2,3-diphosphoglycerate (2,3-DPG), nicotinamide adenine dinucleotide (NADH and NAD+), phosphocreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). The measured chemical shifts were used to construct a basis set of 31P MR spectra for the evaluation of 31P in vivo spectra of muscle and the liver using LCModel software (linear combination model). Prior knowledge was successfully employed in the analysis of previously acquired in vivo data.
Zobrazit více v PubMed
Bottomley P.A., Hart H.R., Edelstein W.A., Schenck J.F., Smith L.S., Leue W.M., Mueller O.M., Redington R.W. Nmr Imaging Spectroscopy System to Study Both Anatomy and Metabolism. Lancet. 1983;2:273–274. doi: 10.1016/S0140-6736(83)90250-7. PubMed DOI
Šedivý P., Kipfelsberger M.C., Dezortová M., Krššák M., Drobný M., Chmelík M., Rydlo J., Trattnig S., Hájek M., Valkovič L. Dynamic 31P MR spectroscopy of plantar flexion: Influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med. Phys. 2015;42:1678–1689. doi: 10.1118/1.4914448. PubMed DOI
Valkovič L., Chmelík M., Krššák M. In-vivo (31)P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal. Biochem. 2017;529:193–215. doi: 10.1016/j.ab.2017.01.018. PubMed DOI PMC
Chmelík M., Valkovič L., Wolf P., Bogner W., Gajdošík M., Halilbasic E., Gruber S., Trauner M., Krebs M., Trattnig S., et al. Phosphatidylcholine contributes to in vivo (31)P MRS signal from the human liver. Eur. Radiol. 2015;25:2059–2066. doi: 10.1007/s00330-014-3578-y. PubMed DOI
Bierwagen A., Begovatz P., Nowotny P., Markgraf D., Nowotny B., Koliaki C., Giani G., Klüppelholz B., Lundbom J., Roden M. Characterization of the peak at 2.06 ppm in (31) P magnetic resonance spectroscopy of human liver: Phosphoenolpyruvate or phosphatidylcholine? NMR Biomed. 2015;28:898–905. doi: 10.1002/nbm.3323. PubMed DOI
Sevastianova K., Hakkarainen A., Kotronen A., Cornér A., Arkkila P., Arola J., Westerbacka J., Bergholm R., Lundbom J., Lundbom N., et al. Nonalcoholic fatty liver disease: Detection of elevated nicotinamide adenine dinucleotide phosphate with in vivo 3.0-T 31P MR spectroscopy with proton decoupling. Radiology. 2010;256:466–473. doi: 10.1148/radiol.10091351. PubMed DOI
Szendroedi J., Schmid A.I., Chmelik M., Krssak M., Nowotny P., Prikoszovich T., Kautzky-Willer A., Wolzt M., Waldhäusl W., Roden M. Skeletal Muscle Phosphodiester Content Relates to Body Mass and Glycemic Control. PLoS ONE. 2011;6:e21846. doi: 10.1371/journal.pone.0021846. PubMed DOI PMC
Sedivy P., Dezortova M., Drobny M., Dubsky M., Dusilova T., Kovar J., Hajek M. Origin of the (31) P MR signal at 5.3 ppm in patients with critical limb ischemia. NMR Biomed. 2020;33:e4295. doi: 10.1002/nbm.4295. PubMed DOI
Dezortova M., Taimr P., Skoch A., Spicak J., Hajek M. Etiology and functional status of liver cirrhosis by 31P MR spectroscopy. World J. Gastroenterol. 2005;11:6926–6931. doi: 10.3748/wjg.v11.i44.6926. PubMed DOI PMC
Beiglbock H., Wolf P., Pfleger L., Caliskan B., Fellinger P., Zettinig G., Anderwald C.H., Kenner L., Trattnig S., Kautzky-Willer A., et al. Effects of Thyroid Function on Phosphodiester Concentrations in Skeletal Muscle and Liver: An In Vivo NMRS Study. J. Clin. Endocrinol. Metab. 2020;105:e4866–e4874. doi: 10.1210/clinem/dgaa663. PubMed DOI
Valkovič L., Chmelík M., Ukropcová B., Heckmann T., Bogner W., Frollo I., Tschan H., Krebs M., Bachl N., Ukropec J., et al. Skeletal muscle alkaline Pi pool is decreased in overweight-to-obese sedentary subjects and relates to mitochondrial capacity and phosphodiester content. Sci. Rep. 2016;6:20087. doi: 10.1038/srep20087. PubMed DOI PMC
Kan H.E., Klomp D.W.J., Wong C.S., Boer V.O., Webb A.G., Luijten P.R., Jeneson J.A. In vivo 31P MRS detection of an alkaline inorganic phosphate pool with short T1 in human resting skeletal muscle. NMR Biomed. 2010;23:995–1000. doi: 10.1002/nbm.1517. PubMed DOI PMC
Van Oorschot J.W.M., Schmitz J.P.J., Webb A., Nicolay K., Jeneson J.A.L., Kan H.E. 31P MR Spectroscopy and Computational Modeling Identify a Direct Relation between Pi Content of an Alkaline Compartment in Resting Muscle and Phosphocreatine Resynthesis Kinetics in Active Muscle in Humans. PLoS ONE. 2013;8:e76628. doi: 10.1371/journal.pone.0076628. PubMed DOI PMC
Provencher S.W. Estimation of Metabolite Concentrations from Localized in-Vivo Proton Nmr-Spectra. Magn. Reson. Med. 1993;30:672–679. doi: 10.1002/mrm.1910300604. PubMed DOI
Deelchand D.K., Nguyen T.M., Zhu X.H., Mochel F., Henry P.G. Quantification of in vivo (3)(1)P NMR brain spectra using LCModel. NMR Biomed. 2015;28:633–641. doi: 10.1002/nbm.3291. PubMed DOI PMC
Li S., van der Veen J.W., An L., Stolinski J., Johnson C., Ferraris-Araneta M., Victorino M., Tomar J.S., Shen J. Cerebral phosphoester signals measured by 31P magnetic resonance spectroscopy at 3 and 7 Tesla. PLoS ONE. 2021;16:e0248632. doi: 10.1371/journal.pone.0248632. PubMed DOI PMC
Conley K.E., Ali A.S., Flores B., Jubrias S.A., Shankland E.G. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the (31)P Magnetic Resonance Spectrum. Front. Physiol. 2016;7:45. doi: 10.3389/fphys.2016.00045. PubMed DOI PMC
Meyerspeer M., Boesch C., Cameron D., Dezortová M., Forbes S.C., Heerschap A., Jeneson J.A.L., Kan H.E., Kent J., Layec G., et al. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2021;34:e4246. doi: 10.1002/nbm.4246. PubMed DOI PMC
Purvis L.A.B., Clarke W.T., Valkovič L., Levick C., Pavlides M., Barnes E., Cobbold J.F., Robson M.D., Rodgers C.T. Phosphodiester content measured in human liver by in vivo (31) P MR spectroscopy at 7 tesla. Magn. Reson. Med. 2017;78:2095–2105. doi: 10.1002/mrm.26635. PubMed DOI PMC
De Graaf R.A., De Feyter H.M., Brown P.B., Nixon T.W., Rothman D.L., Behar K.L. Detection of cerebral NAD(+) in humans at 7T. Magn. Reson. Med. 2017;78:828–835. doi: 10.1002/mrm.26465. PubMed DOI PMC
Peeters T.H., van Uden M.J., Rijpma A., Scheenen T.W.J., Heerschap A. 3D (31) P MR spectroscopic imaging of the human brain at 3 T with a (31) P receive array: An assessment of (1) H decoupling, T(1) relaxation times, (1) H-(31) P nuclear Overhauser effects and NAD(+) NMR Biomed. 2019;34:e4169. doi: 10.1002/nbm.4169. PubMed DOI PMC
Pollock A.S. Intracellular pH of hepatocytes in primary monolayer culture. Am. J. Physiol. 1984;246:F738–F744. doi: 10.1152/ajprenal.1984.246.5.F738. PubMed DOI
Strazzabosco M., Poci C., Spirlì C., Zsembery A., Granato A., Massimino M.L., Crepaldi G. Intracellular pH regulation in Hep G2 cells: Effects of epidermal growth factor, transforming growth factor-alpha, and insulinlike growth factor-II on Na+/H+ exchange activity. Hepatology. 1995;22:588–597. PubMed
Kim J.H., Johannes L., Goud B., Antony C., Lingwood C.A., Daneman R., Grinstein S. Noninvasive measurement of the pH of the endoplasmic reticulum at rest and during calcium release. Proc. Natl. Acad. Sci. USA. 1998;95:2997–3002. doi: 10.1073/pnas.95.6.2997. PubMed DOI PMC
Nedergaard M., Kraig R.P., Tanabe J., Pulsinelli W.A. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am. J. Physiol. 1991;260:R581–R588. doi: 10.1152/ajpregu.1991.260.3.R581. PubMed DOI PMC
Akhmedov D., Braun M., Mataki C., Park K.S., Pozzan T., Schoonjans K., Rorsman P., Wollheim C.B., Wiederkehr A. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells. FASEB J. 2010;24:4613–4626. doi: 10.1096/fj.10-162222. PubMed DOI
Santo-Domingo J., Demaurex N. The renaissance of mitochondrial pH. J. Gen. Physiol. 2012;139:415–423. doi: 10.1085/jgp.201110767. PubMed DOI PMC
Labotka R.J., Kleps R.A. A phosphate-analogue probe of red cell pH using phosphorus-31 nuclear magnetic resonance. Biochemistry. 1983;22:6089–6095. doi: 10.1021/bi00295a008. PubMed DOI
Labotka R.J. Measurement of intracellular pH and deoxyhemoglobin concentration in deoxygenated erythrocytes by phosphorus-31 nuclear magnetic resonance. Biochemistry. 1984;23:5549–5555. doi: 10.1021/bi00318a026. PubMed DOI
Kemp G.J., Meyerspeer M., Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: A quantitative review. NMR Biomed. 2007;20:555–565. doi: 10.1002/nbm.1192. PubMed DOI
McDowell R.W., Stewart I. Peak assignments for phosphorus-31 nuclear magnetic resonance spectroscopy in pH range 5-13 and their application in environmental samples. Chem. Ecol. 2005;21:211–226. doi: 10.1080/02757540500211590. DOI
Moon R.B., Richards J.H. Determination of intracellular pH by 31P magnetic resonance. J. Biol. Chem. 1973;248:7276–7278. doi: 10.1016/S0021-9258(19)43389-9. PubMed DOI
Sedivy P., Drobny M., Dezortova M., Herynek V., Roztocil K., Cermakova H., Nemcova A., Dubsky M., Hajek M. 31P-MR spectroscopy in patients with mild and serious lower limb ischemia. Int. Angiol. 2018;37:293–299. doi: 10.23736/S0392-9590.18.03943-3. PubMed DOI
Rata M., Giles S.L., deSouza N.M., Leach M.O., Payne G.S. Comparison of three reference methods for the measurement of intracellular pH using 31P MRS in healthy volunteers and patients with lymphoma. NMR Biomed. 2014;27:158–162. doi: 10.1002/nbm.3047. PubMed DOI PMC
Jung W.I., Widmaier S., Seeger U., Bunse M., Staubert A., Sieverding L., Straubinger K., van Erckelens F., Schick F., Dietze G., et al. Phosphorus J coupling constants of ATP in human myocardium and calf muscle. J. Magn. Reson. B. 1996;110:39–46. doi: 10.1006/jmrb.1996.0005. PubMed DOI
De Graaf R.A. In Vivo NMR Spectroscopy, Principles and Techniques. 2nd ed. John Wiley&Sons Ltd.; Chichester, UK: 2007. pp. 1–570.
Turner B.L., Mahieu N., Condron L.M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci. Soc. Am. J. 2003;67:497–510. doi: 10.2136/sssaj2003.4970. DOI
Cade-Menun B.J. Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma. 2015;257–258:102–114. doi: 10.1016/j.geoderma.2014.12.016. DOI
Cohn M., Hughes T.R., Jr. Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J. Biol. Chem. 1962;237:176–181. doi: 10.1016/S0021-9258(18)81382-5. PubMed DOI
Szabo Z. Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides. Coord. Chem. Rev. 2008;252:2362–2380. doi: 10.1016/j.ccr.2008.03.002. DOI
Hernández E., Kahl S., Seelig A., Begovatz P., Irmler M., Kupriyanova Y., Nowotny B., Nowotny P., Herder C., Barosa C., et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Investig. 2017;127:695–708. doi: 10.1172/JCI89444. PubMed DOI PMC
Hultman E., Nilsson L.H., Sahlin K. Adenine nucleotide content of human liver. Normal values and fructose-induced depletion. Scand. J. Clin. Lab. Investig. 1975;35:245–251. doi: 10.3109/00365517509095736. PubMed DOI
Traussnigg S., Kienbacher C., Gajdošík M., Valkovič L., Halilbasic E., Stift J., Rechling C., Hofer H., Steindl-Munda P., Ferenci P., et al. Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis. Liver Int. 2017;37:1544–1553. doi: 10.1111/liv.13451. PubMed DOI PMC
Cheng M., Bhujwalla Z.M., Glunde K. Targeting Phospholipid Metabolism in Cancer. Front. Oncol. 2016;6:266. doi: 10.3389/fonc.2016.00266. PubMed DOI PMC
Tosner Z., Dezortova M., Tintera J., Hajek M. Application of two-dimensional CSI for absolute quantification of phosphorus metabolites in the human liver. Magma. 2001;13:40–46. doi: 10.1007/BF02668649. PubMed DOI
Pfleger L., Halilbasic E., Gajdošík M., Benčíková D., Chmelík M., Scherer T., Trattnig S., Krebs M., Trauner M., Krššák M. Concentration of Gallbladder Phosphatidylcholine in Cholangiopathies: A Phosphorus-31 Magnetic Resonance Spectroscopy Pilot Study. J. Magn. Reson. Imaging. 2021 doi: 10.1002/jmri.27817. PubMed DOI
De Haan J.H., Klomp D.W., Tack C.J., Heerschap A. Optimized detection of changes in glucose-6-phosphate levels in human skeletal muscle by 31P MR spectroscopy. Magn. Reson. Med. 2003;50:1302–1306. doi: 10.1002/mrm.10630. PubMed DOI
Roden M., Krssak M., Stingl H., Gruber S., Hofer A., Furnsinn C., Moser E., Waldhausl W. Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes. 1999;48:358–364. doi: 10.2337/diabetes.48.2.358. PubMed DOI
Rothman D.L., Shulman R.G., Shulman G.I. P-31 Nuclear-Magnetic-Resonance Measurements of Muscle Glucose-6-Phosphate—Evidence for Reduced Insulin-Dependent Muscle Glucose-Transport or Phosphorylation Activity in Non-Insulin-Dependent Diabetes-Mellitus. J. Clin. Investig. 1992;89:1069. doi: 10.1172/JCI115686. PubMed DOI PMC
Cline G.W., Petersen K.F., Krssak M., Shen J., Hundal R.S., Trajanoski Z., Inzucchi S., Dresner A., Rothman D.L., Shulman G.I. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N. Engl. J. Med. 1999;341:240. doi: 10.1056/NEJM199907223410404. PubMed DOI
Noren B., Dahlqvist O., Lundberg P., Almer S., Kechagias S., Ekstedt M., Franzén L., Wirell S., Smedby O. Separation of advanced from mild fibrosis in diffuse liver disease using 31P magnetic resonance spectroscopy. Eur. J. Radiol. 2008;66:313–320. doi: 10.1016/j.ejrad.2007.06.004. PubMed DOI
Buchli R., Meier D., Martin E., Boesiger P. Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo. Part II: Muscle, liver, kidney. Magn. Reson. Med. 1994;32:453–458. doi: 10.1002/mrm.1910320405. PubMed DOI
Li C.W., Negendank W.G., Murphy-Boesch J., Padavic-Shaller K., Brown T.R. Molar quantitation of hepatic metabolites in vivo in proton-decoupled, nuclear Overhauser effect enhanced 31P NMR spectra localized by three-dimensional chemical shift imaging. NMR Biomed. 1996;9:141–155. doi: 10.1002/(SICI)1099-1492(199606)9:4<141::AID-NBM403>3.0.CO;2-P. PubMed DOI
Chmelík M., Schmid A.I., Gruber S., Szendroedi J., Krššák M., Trattnig S., Moser E., Roden M. Three-dimensional high-resolution magnetic resonance spectroscopic imaging for absolute quantification of 31P metabolites in human liver. Magn. Reson. Med. 2008;60:796–802. doi: 10.1002/mrm.21762. PubMed DOI
Laufs A., Livingstone R., Nowotny B., Nowotny P., Wickrath F., Giani G., Bunke J., Roden M., Hwang J.-H. Quantitative liver 31 P magnetic resonance spectroscopy at 3T on a clinical scanner. Magn. Reson. Med. 2014;71:1670–1675. doi: 10.1002/mrm.24835. PubMed DOI
Pfleger L., Gajdošík M., Wolf P., Smajis S., Fellinger P., Kuehne A., Krumpolec P., Trattnig S., Winhofer Y., Krebs M., et al. Absolute Quantification of Phosphor-Containing Metabolites in the Liver Using (31)P MRSI and Hepatic Lipid Volume Correction at 7T Suggests No Dependence on Body Mass Index or Age. J. Magn. Reson. Imaging. 2019;49:597–607. doi: 10.1002/jmri.26225. PubMed DOI PMC
Hooijmans M.T., Doorenweerd N., Baligand C., Verschuuren J., Ronen I., Niks E.H., Webb A.G., Kan H.E. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up. PLoS ONE. 2017;12:e0182086. doi: 10.1371/journal.pone.0182086. PubMed DOI PMC
Krumpolec P., Klepochova R., Just I., Tusek Jelenc M., Frollo I., Ukropec J., Ukropcova B., Trattnig S., Krssak M., Valkovic L. Multinuclear MRS at 7T Uncovers Exercise Driven Differences in Skeletal Muscle Energy Metabolism Between Young and Seniors. Front. Physiol. 2020;11:644. doi: 10.3389/fphys.2020.00644. PubMed DOI PMC
Klepochova R., Valkovic L., Hochwartner T., Triska C., Bachl N., Tschan H., Trattnig S., Krebs M., Krssak M. Differences in Muscle Metabolism Between Triathletes and Normally Active Volunteers Investigated Using Multinuclear Magnetic Resonance Spectroscopy at 7T. Front Physiol. 2018;9:300. doi: 10.3389/fphys.2018.00300. PubMed DOI PMC
Roper D., Layton M. Investigation of the hereditary haemolytic anaemias: Membrane and enzyme abnormalities. In: Lewis S., Bain B., Bates I., editors. Dacie and Lewis Practical Haematology. 10th ed. Elsevier; Amsterdam, The Netherlands: 2006. DOI
Lu M., Zhu X.H., Zhang Y., Chen W. Intracellular Redox State Revealed by In Vivo P-31 MRS Measurement of NAD(+) and NADH Contents in Brains. Magn. Reson. Med. 2014;71:1959–1972. doi: 10.1002/mrm.24859. PubMed DOI PMC
Lu M., Zhu X.H., Chen W. In vivo P-31 MRS assessment of intracellular NAD metabolites and NAD(+)/NADH redox state in human brain at 4 T. NMR Biomed. 2016;29:1010–1017. doi: 10.1002/nbm.3559. PubMed DOI PMC
Chouinard V.A., Kim S.Y., Valeri L., Yuksel C., Ryan K.P., Chouinard G., Cohen B.M., Du F., Öngür D. Brain bioenergetics and redox state measured by (31)P magnetic resonance spectroscopy in unaffected siblings of patients with psychotic disorders. Schizoph. Res. 2017;187:11–16. doi: 10.1016/j.schres.2017.02.024. PubMed DOI PMC
Henriksson J., Katz A., Sahlin K. Redox state changes in human skeletal muscle after isometric contraction. J. Physiol. 1986;380:441–451. doi: 10.1113/jphysiol.1986.sp016296. PubMed DOI PMC
Sarma R.H., Lee C.H., Hruska F.E., Wood D.J. H-1, H-1-[P-31], P-31, and P-31-[H-1] fast Fourier transform NMR study of solution conformation of cofactors involved in glycogen synthesis: Adenosinediphosphoglucose and uridinediphosphoglucose. FEBS Lett. 1973;36:157–162. doi: 10.1016/0014-5793(73)80359-X. PubMed DOI
Stefan D., Cesare F.D., Andrasescu A., Popa E., Lazariev A., Vescovo E., Strbak O., Williams S., Starcuk Z., Cabanas M., et al. Quantitation of magnetic resonance spectroscopy signals: The jMRUI software package. Meas. Sci. Technol. 2009;20:104035. doi: 10.1088/0957-0233/20/10/104035. DOI
Gajdosik M., Landheer K., Swanberg K.M., Juchem C. INSPECTOR: Free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis. Sci. Rep. 2021;11:2094. doi: 10.1038/s41598-021-81193-9. PubMed DOI PMC
Deelchand D.K., Ugurbil K., Henry P.G. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling. Magn. Res. Med. 2006;55:279–286. doi: 10.1002/mrm.20756. PubMed DOI
Skupienski R., Do K.Q., Xin L. In vivo 31P magnetic resonance spectroscopy study of mouse cerebral NAD content and redox state during neurodevelopment. Sci. Rep. 2020;10:15623. doi: 10.1038/s41598-020-72492-8. PubMed DOI PMC
Hájek M., Palyzová D., Korínek M., Kurková D. Concentrations of free mg2+, pH and 31P MR metabolite ratios in calf muscles of healthy controls and patients with primary juvenile hypertension. Physiol. Res. 2002;51:159–167. PubMed
Henry P.G., Oz G., Provencher S., Gruetter R. Toward dynamic isotopomer analysis in the rat brain in vivo: Automatic quantitation of 13C NMR spectra using LCModel. NMR Biomed. 2003;16:400–412. doi: 10.1002/nbm.840. PubMed DOI