Origin of the 31 P MR signal at 5.3 ppm in patients with critical limb ischemia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32180296
DOI
10.1002/nbm.4295
Knihovny.cz E-zdroje
- Klíčová slova
- applications, body, diabetes, methods and engineering, MRS and MRSI methods, muscle, musculoskeletal, phosphorus MRS/MRSI,
- MeSH
- fantomy radiodiagnostické MeSH
- fosfor chemie MeSH
- ischemie diagnostické zobrazování MeSH
- koncentrace vodíkových iontů MeSH
- končetiny diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie * MeSH
- odpočinek MeSH
- počítačové zpracování signálu * MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfor MeSH
An unknown intense signal (Pun ) with a mean chemical shift of 5.3 ppm was observed in 31 P MR spectra from the calf muscles of patients with the diabetic foot syndrome. The aim of the study was to identify the origin of this signal and its potential as a biomarker of muscle injury. Calf muscles of 68 diabetic patients (66.3 ± 8.6 years; body mass index = 28.2 ± 4.3 kg/m2 ) and 12 age-matched healthy controls were examined by (dynamic) 31 P MRS (3 T system, 31 P/1 H coil). Phantoms (glucose-1-phosphate, Pi and PCr) were measured at pH values of 7.05 and 7.51. At rest, Pun signals with intensities higher than 50% of the Pi intensity were observed in 10 of the 68 examined diabetic subjects. We tested two hypothetical origins of the Pun signal: (1) phosphorus from phosphoesters and (2) phosphorus from extra- and intracellular alkaline phosphate pools. 2,3-diphosphoglycerate and glucose-1-phosphate are the only phosphoesters with signals in the chemical shift region close to 5.3 ppm. Both compounds can be excluded: 2,3-diphosphoglycerate due to the missing second signal component at 6.31 ppm; glucose-1-phosphate because its chemical shifts are about 0.2 ppm downfield from the Pi signal (4.9 ppm). If the Pun signal is from phosphate, it represents a pH value of 7.54 ± 0.05. Therefore, it could correspond to signals of Pi in mitochondria. However, patients with critical limb ischemia have rather few mitochondria and so the Pun signal probably originates from interstitia. Our data suggest that the increased Pun signal observed in patients with the diabetic foot syndrome is a biomarker of severe muscular damage.
Department of Diabetology Institute for Clinical and Experimental Medicine Prague Czech Republic
Experimental Medicine Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: a way for non-invasive assessment of their metabolism. Anal Biochem. 2017;529:193-215. https://doi.org/10.1016/j.ab.2017.01.018
Mattei JP, Bendahan D, Cozzone P. P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo. 2004;56(1):9-14. https://doi.org/10.1097/01.TP.0000039303.05792.FC
Argov Z, Löfberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve. 2000;23(9):1316-1334. http://www.ncbi.nlm.nih.gov/pubmed/10951434. Accessed May 31, 2017
Moon RB, Richards JH. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973;248(20):7276-7278. http://www.ncbi.nlm.nih.gov/pubmed/4743524. Accessed May 31, 2017
Kemp GJ, Radda GK. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q. 1994;10(1):43-63. http://www.ncbi.nlm.nih.gov/pubmed/8161485. Accessed June 5, 2017
Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol. 2015;213(1):107-144. https://doi.org/10.1111/apha.12307
Valkovič L, Bogner W, Gajdošík M, et al. One-dimensional image-selected in vivo spectroscopy localized phosphorus saturation transfer at 7T. Magn Reson Med. 2014;72(6):1509-1515. https://doi.org/10.1002/mrm.25058
Kemp GJ, Brindle KM. What do magnetic resonance-based measurements of Pi→ATP flux tell us about skeletal muscle metabolism? Diabetes. 2012;61(8):1927-1934. https://doi.org/10.2337/db11-1725
Xin L, Ipek Ö, Beaumont M, et al. Nutritional ketosis increases NAD+/NADH ratio in healthy human brain: an in vivo study by 31P-MRS. Front Nutr. 2018;5: 62. https://doi.org/10.3389/fnut.2018.00062
Krikken E, Kemp WJM, Diest PJ, et al. Early detection of changes in phospholipid metabolism during neoadjuvant chemotherapy in breast cancer patients using phosphorus magnetic resonance spectroscopy at 7T. NMR Biomed. 2019;32(6):e4086. https://doi.org/10.1002/nbm.4086
Kan HE, Klomp DWJ, Wong CS, et al. In vivo 31P MRS detection of an alkaline inorganic phosphate pool with short T1 in human resting skeletal muscle. NMR Biomed. 2010;23(8):995-1000. https://doi.org/10.1002/nbm.1517
Valkovič L, Chmelík M, Ukropcová B, et al. Skeletal muscle alkaline Pi pool is decreased in overweight-to-obese sedentary subjects and relates to mitochondrial capacity and phosphodiester content. Sci Rep. 2016;6(1):20087. https://doi.org/10.1038/srep20087
van Oorschot JWM, Schmitz JPJ, Webb A, Nicolay K, Jeneson JAL, Kan HE. 31P MR spectroscopy and computational modeling identify a direct relation between Pi content of an alkaline compartment in resting muscle and phosphocreatine resynthesis kinetics in active muscle in humans. PLoS ONE. 2013;8(9):e76628. https://doi.org/10.1371/journal.pone.0076628
Reyngoudt H, Turk S, Carlier PG. 1H NMRS of carnosine combined with 31P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy. NMR Biomed. 2018;31(1):e3839. https://doi.org/10.1002/nbm.3839
Wary C, Azzabou N, Giraudeau C, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed. 2015;28(9):1150-1162. https://doi.org/10.1002/nbm.3352
Wary C, Naulet T, Thibaud J-L, Monnet A, Blot S, Carlier PG. Splitting of Pi and other 31P NMR anomalies of skeletal muscle metabolites in canine muscular dystrophy. NMR Biomed. 2012;25(10):1160-1169. https://doi.org/10.1002/nbm.2785
Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R. Overview of classification systems in peripheral artery disease. Semin Intervent Radiol. 2014;31(4):378-388. https://doi.org/10.1055/s-0034-1393976
Šedivý P, Kipfelsberger MC, Dezortová M, et al. Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med Phys. 2015;42(4):1678-1689. https://doi.org/10.1118/1.4914448
Stefan D, Di Cesare F, Andrasescu A, et al. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol. 2009;20(10):104035. https://doi.org/10.1088/0957-0233/20/10/104035
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35-43. http://www.ncbi.nlm.nih.gov/pubmed/9405214. Accessed August 16, 2019
Taylor DJ, Styles P, Matthews PM, et al. Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med. 1986;3(1):44-54. http://www.ncbi.nlm.nih.gov/pubmed/3959889. Accessed June 21, 2017
Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed. 2007;20(6):555-565. https://doi.org/10.1002/nbm.1192
Younkin DP, Berman P, Sladky J, Chee C, Bank W, Chance B. 31P NMR studies in Duchenne muscular dystrophy: age-related metabolic changes. Neurology. 1987;37(1):165-169. http://www.ncbi.nlm.nih.gov/pubmed/3796830. Accessed December 13, 2017
Schunk K, Romaneehsen B, Mildenberger P, Kersjes W, Schadmand-Fischer S, Thelen M. Dynamic phosphorus-31 magnetic resonance spectroscopy in arterial occlusive disease. Correlation with clinical and angiographic findings and comparison with healthy volunteers. Invest Radiol. 1997;32(11):651-659. http://www.ncbi.nlm.nih.gov/pubmed/9387051. Accessed May 31, 2017
van den Broek NMA, Ciapaite J, Nicolay K, Prompers JJ. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function. Am J Physiol Cell Physiol. 2010;299(5):C1136-C1143. https://doi.org/10.1152/ajpcell.00200.2010
Schmidt O, Bunse M, Dietze GJ, Lutz O, Jung WI. Unveiling extracellular inorganic phosphate signals from blood in human cardiac 31P NMR spectra. J Cardiovasc Magn Reson. 2001;3(4):325-329. http://www.ncbi.nlm.nih.gov/pubmed/11777224. Accessed January 17, 2019
de Graaf RA. In Vivo NMR Spectroscopy: Principles and Techniques. 2nd ed. Chichester, UK: Wiley; 2007 https://doi.org/10.1002/9780470512968.
Cade-Menun BJ. Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma. 2015;257-258:102-114. https://doi.org/10.1016/j.geoderma.2014.12.016
Gupta RK, Benovic JL, Rose ZB. The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem. 1978;253(17):6172-6176. http://www.ncbi.nlm.nih.gov/pubmed/687387. Accessed February 13, 2019
Schunk K, Pitton M, Düber C, Kersjes W, Schadmand-Fischer S, Thelen M. Dynamic phosphorus-31 magnetic resonance spectroscopy of the quadriceps muscle: effects of age and sex on spectroscopic results. Invest Radiol. 1999;34(2):116-125. http://www.ncbi.nlm.nih.gov/pubmed/9951791. Accessed June 10, 2017
Yki-Järvinen H, Sahlin K, Ren JM, Koivisto VA. Localization of rate-limiting defect for glucose disposal in skeletal muscle of insulin-resistant type I diabetic patients. Diabetes. 1990;39(2):157-167. http://www.ncbi.nlm.nih.gov/pubmed/2121571. Accessed April 1, 2019
Matsuda R, Nishikawa A, Tanaka H. Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem. 1995;118(5):959-964. https://doi.org/10.1093/jb/118.5.959
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. J Gen Physiol. 2012;139(6):415-423. https://doi.org/10.1085/jgp.201110767
Street D, Bangsbo J, Juel C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J Physiol. 2001;537(3):993-998. https://doi.org/10.1111/j.1469-7793.2001.00993.x
Ryan LM, Kozin F, McCarty DJ. Quantification of human plasma inorganic pyrophosphate. II Biologic variables. Arthritis Rheum. 1979;22(8):892-895. https://doi.org/10.1002/art.1780220813
De Lanne R, Barnes JR, Brouha L. Changes in osmotic pressure and ionic concentrations of plasma during muscular work and recovery. J Appl Physiol. 1959;14(5):804-808. https://doi.org/10.1152/jappl.1959.14.5.804
Tiret B, Brouillet E, Valette J. Evidence for a “metabolically inactive” inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7T. J Cereb Blood Flow Metab. 2016;36(9):1513-1518. https://doi.org/10.1177/0271678X16657095