• This record comes from PubMed

Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence?

. 2023 Nov ; 27 (6) : 673-683. [epub] 20230922

Language English Country New Zealand Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37740111
PubMed Central PMC10590286
DOI 10.1007/s40291-023-00667-w
PII: 10.1007/s40291-023-00667-w
Knihovny.cz E-resources

This current opinion article critically evaluates the efficacy of autologous cell therapy (ACT) for chronic limb-threatening ischemia (CLTI), especially in people with diabetes who are not candidates for standard revascularization. This treatment approach has been used in 'no-option' CLTI in the last two decades and more than 1700 patients have received ACT worldwide. Here we analyze the level of published evidence of ACT as well as our experience with this treatment method. Many studies have shown that ACT is safe and an effective method for patients with the most severe lower limb ischemia. However, some trials did not show any benefit of ACT, and there is some heterogeneity in the types of injected cells, route of administration and assessed endpoints. Nevertheless, we believe that ACT plays an important role in a comprehensive treatment of patients with diabetic foot and severe ischemia.

See more in PubMed

Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400:1803–1820. doi: 10.1016/S0140-6736(22)01655-5. PubMed DOI

Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366:1719–1724. doi: 10.1016/S0140-6736(05)67698-2. PubMed DOI

Turns M. Diabetic foot ulcer management: the podiatrist's perspective. Br J Community Nurs. 2013;18(Suppl):S14. doi: 10.12968/bjcn.2013.18.Sup12.S14. PubMed DOI

Thorud JC, Plemmons B, Buckley CJ, Shibuya N, Jupiter DC. Mortality after nontraumatic major amputation among patients with diabetes and peripheral vascular disease: a systematic review. J Foot Ankle Surg. 2016;55:591–599. doi: 10.1053/j.jfas.2016.01.012. PubMed DOI

Ogurtsova K, Morbach S, Haastert B, Dubsky M, Rumenapf G, Ziegler D, et al. Cumulative long-term recurrence of diabetic foot ulcers in two cohorts from centres in Germany and the Czech Republic. Diabetes Res Clin Pract. 2021;172:108621. doi: 10.1016/j.diabres.2020.108621. PubMed DOI

Dubsky M, Jirkovska A, Bem R, Nemcova A, Fejfarova V, Jude EB. Cell therapy of critical limb ischemia in diabetic patients—state of art. Diabetes Res Clin Pract. 2017;126:263–271. doi: 10.1016/j.diabres.2017.02.028. PubMed DOI

Al Mheid I, Quyyumi AA. Cell therapy in peripheral arterial disease. Angiology. 2008;59:705–716. doi: 10.1177/0003319708321584. PubMed DOI

Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2010;209:10–17. doi: 10.1016/j.atherosclerosis.2009.08.033. PubMed DOI

Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010;103:696–709. doi: 10.1160/TH09-10-0688. PubMed DOI

Teraa M, Sprengers RW, van der Graaf Y, Peters CE, Moll FL, Verhaar MC. Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials. Ann Surg. 2013;258:922–929. doi: 10.1097/SLA.0b013e3182854cf1. PubMed DOI

Panunzi A, Madotto F, Sangalli E, Riccio F, Sganzaroli AB, Galenda P, et al. Results of a prospective observational study of autologous peripheral blood mononuclear cell therapy for no-option critical limb-threatening ischemia and severe diabetic foot ulcers. Cardiovasc Diabetol. 2022;21:196. doi: 10.1186/s12933-022-01629-y. PubMed DOI PMC

Meyerspeer M, Boesch C, Cameron D, Dezortova M, Forbes SC, Heerschap A, et al. (31) P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR Biomed. 2020;34:e4246. doi: 10.1002/nbm.4246. PubMed DOI PMC

Hájek MŠP, Kovář J, Dezortová M. Dynamická in vivo 31P MR spektroskopie člověka. Chem Listy. 2017;111:516–523.

Pan X, Chen G, Wu P, Han C, Ho JK. Skin perfusion pressure as a predictor of ischemic wound healing potential. Biomed Rep. 2018;8:330–334. PubMed PMC

Tsuji Y, Hiroto T, Kitano I, Tahara S, Sugiyama D. Importance of skin perfusion pressure in treatment of critical limb ischemia. Wounds. 2008;20:95–100. PubMed

Thomas KN, Cotter JD, Lucas SJ, Hill BG, van Rij AM. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease. Ultrasound Med Biol. 2015;41:26–34. doi: 10.1016/j.ultrasmedbio.2014.06.012. PubMed DOI

Meneses AL, Nam MCY, Bailey TG, Magee R, Golledge J, Hellsten Y, et al. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2018;315:H1425–H1433. doi: 10.1152/ajpheart.00232.2018. PubMed DOI

Pu H, Huang Q, Zhang X, Wu Z, Qiu P, Jiang Y, et al. A meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J Vasc Surg. 2022;75(1440–1449):e1445. PubMed

Sun Y, Zhao J, Zhang L, Li Z, Lei S. Effectiveness and safety of stem cell therapy for diabetic foot: a meta-analysis update. Stem Cell Res Ther. 2022;13:416. doi: 10.1186/s13287-022-03110-9. PubMed DOI PMC

Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2019;10:140. doi: 10.1186/s13287-019-1254-5. PubMed DOI PMC

Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg. 2019;69:3S-125Se140. doi: 10.1016/j.jvs.2019.02.016. PubMed DOI PMC

Nickinson ATO, Houghton JSM, Bridgwood B, Essop-Adam A, Nduwayo S, Payne T, et al. The utilisation of vascular limb salvage services in the assessment and management of chronic limb-threatening ischaemia and diabetic foot ulceration: A systematic review. Diabetes Metab Res Rev. 2020;36:e3326. doi: 10.1002/dmrr.3326. PubMed DOI

Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63–74. doi: 10.2147/VHRM.S125065. PubMed DOI PMC

Neagu C, Buzea A, Agache A, Georgescu D, Patrascu T. Surgical revascularization in chronic limb-threatening ischemia in diabetic patients. Chirurgia (Bucur) 2018;113:668–677. doi: 10.21614/chirurgia.113.5.668. PubMed DOI

Dalla Paola L, Cimaglia P, Carone A, Scavone G, Boscarino G, Bernucci D, et al. Limb salvage in diabetic patients with no-option critical limb ischemia: outcomes of a specialized center experience. Diabet Foot Ankle. 2019;10:1696012. doi: 10.1080/2000625X.2019.1696012. PubMed DOI PMC

Soria-Juan B, Escacena N, Capilla-Gonzalez V, Aguilera Y, Llanos L, Tejedo JR, et al. Cost-effective, safe, and personalized cell therapy for critical limb ischemia in type 2 diabetes mellitus. Front Immunol. 2019;10:1151. doi: 10.3389/fimmu.2019.01151. PubMed DOI PMC

Xie B, Luo H, Zhang Y, Wang Q, Zhou C, Xu D. Autologous stem cell therapy in critical limb ischemia: a meta-analysis of randomized controlled trials. Stem Cells Int. 2018;2018:7528464. doi: 10.1155/2018/7528464. PubMed DOI PMC

Pysna A, Bem R, Nemcova A, Fejfarova V, Jirkovska A, Hazdrova J, et al. Endothelial progenitor cells biology in diabetes mellitus and peripheral arterial disease and their therapeutic potential. Stem Cell Rev Rep. 2019;15:157–165. doi: 10.1007/s12015-018-9863-4. PubMed DOI

Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med. 2014;3:949–957. doi: 10.5966/sctm.2014-0052. PubMed DOI PMC

Fadini GP, Spinetti G, Santopaolo M, Madeddu P. Impaired regeneration contributes to poor outcomes in diabetic peripheral artery disease. Arterioscler Thromb Vasc Biol. 2020;40:34–44. doi: 10.1161/ATVBAHA.119.312863. PubMed DOI

Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T. Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013;21:545–553. doi: 10.1111/wrr.12051. PubMed DOI

Inoue O, Usui S, Takashima SI, Nomura A, Yamaguchi K, Takeda Y, et al. Diabetes impairs the angiogenic capacity of human adipose-derived stem cells by reducing the CD271(+) subpopulation in adipose tissue. Biochem Biophys Res Commun. 2019;517:369–375. doi: 10.1016/j.bbrc.2019.07.081. PubMed DOI

Alshoubaki YK, Nayer B, Das S, Martino MM. Modulation of the activity of stem and progenitor cells by immune cells. Stem Cells Transl Med. 2022;11:248–258. doi: 10.1093/stcltm/szab022. PubMed DOI PMC

Kizil C, Kyritsis N, Brand M. Effects of inflammation on stem cells: together they strive? EMBO Rep. 2015;16:416–426. doi: 10.15252/embr.201439702. PubMed DOI PMC

Mennes OA, van Netten JJ, van Baal JG, Steenbergen W. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging. Physiol Meas. 2019;40:065002. doi: 10.1088/1361-6579/ab2058. PubMed DOI

Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–435. doi: 10.1016/S0140-6736(02)09670-8. PubMed DOI

Hinchliffe RJ, Forsythe RO, Apelqvist J, Boyko EJ, Fitridge R, Hong JP, et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update) Diabetes Metab Res Rev. 2020;36(Suppl 1):e3276. doi: 10.1002/dmrr.3276. PubMed DOI

Fejfarova V, Matuska J, Jude E, Pithova P, Flekac M, Roztocil K, et al. Stimulation TcPO2 testing improves diagnosis of peripheral arterial disease in patients with diabetic foot. Front Endocrinol (Lausanne) 2021;12:744195. doi: 10.3389/fendo.2021.744195. PubMed DOI PMC

Kalani M, Brismar K, Fagrell B, Ostergren J, Jorneskog G. Transcutaneous oxygen tension and toe blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care. 1999;22:147–151. doi: 10.2337/diacare.22.1.147. PubMed DOI

Klepanec A, Mistrik M, Altaner C, Valachovicova M, Olejarova I, Slysko R, et al. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transplant. 2012;21:1909–1918. doi: 10.3727/096368912X636948. PubMed DOI

Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013;29:369–376. doi: 10.1002/dmrr.2399. PubMed DOI

Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res. 2015;116:1561–1578. doi: 10.1161/CIRCRESAHA.115.303565. PubMed DOI PMC

Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res Ther. 2017;8:125. doi: 10.1186/s13287-017-0578-2. PubMed DOI PMC

Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E, et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 2011;54:1032–1041. doi: 10.1016/j.jvs.2011.04.006. PubMed DOI

Chruewkamlow N, Pruekprasert K, Phutthakunphithak P, Acharayothin O, Prapassaro T, Hongku K, et al. Novel culture media enhances mononuclear cells from patients with chronic limb-threatening ischemia to increase vasculogenesis and anti-inflammatory effect. Stem Cell Res Ther. 2021;12:520. doi: 10.1186/s13287-021-02592-3. PubMed DOI PMC

Rehak L, Giurato L, Meloni M, Panunzi A, Manti GM, Uccioli L. The immune-centric revolution in the diabetic foot: monocytes and lymphocytes role in wound healing and tissue regeneration—a narrative review. J Clin Med. 2022;11(3):889. 10.3390/jcm11030889. PMID: 35160339; PMCID: PMC8836882. PubMed PMC

Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schluter M, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA) Circ Cardiovasc Interv. 2011;4:26–37. doi: 10.1161/CIRCINTERVENTIONS.110.958348. PubMed DOI

Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131:851–860. doi: 10.1161/CIRCULATIONAHA.114.012913. PubMed DOI

Pignon B, Sevestre MA, Kanagaratnam L, Pernod G, Stephan D, Emmerich J, et al. Autologous bone marrow mononuclear cell implantation and its impact on the outcome of patients with critical limb ischemia—results of a randomized, double-blind, placebo-controlled trial. Circ J. 2017;81:1713–1720. doi: 10.1253/circj.CJ-17-0045. PubMed DOI

Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20:1280–1286. doi: 10.1038/mt.2012.52. PubMed DOI PMC

Molavi B, Zafarghandi MR, Aminizadeh E, Hosseini SE, Mirzayi H, Arab L, et al. Safety and efficacy of repeated bone marrow mononuclear cell therapy in patients with critical limb ischemia in a pilot randomized controlled trial. Arch Iran Med. 2016;19:388–396. PubMed

Kang WC, Oh PC, Lee K, Ahn T, Byun K. Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model. Korean J Physiol Pharmacol. 2016;20:657–667. doi: 10.4196/kjpp.2016.20.6.657. PubMed DOI PMC

Beugels J DMJ, Van Der Hulst R, Kramer BW, Wolters ECH. Efficacy of different doses of human autologous adult bone marrow stem cell transplantation on angiogenesis in an immune deficient rat model with hind limb ischemia. J Stem Cells Res Dev Ther. 2019. 10.24966/SRDT-2060/S1002

Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 2017;120:1326–1340. doi: 10.1161/CIRCRESAHA.116.309045. PubMed DOI

Wang SK, Green LA, Motaganahalli RL, Wilson MG, Fajardo A, Murphy MP. Rationale and design of the MarrowStim PAD Kit for the Treatment of Critical Limb Ischemia in Subjects with Severe Peripheral Arterial Disease (MOBILE) trial investigating autologous bone marrow cell therapy for critical limb ischemia. J Vasc Surg. 2017;65(1850–1857):e1852. PubMed

Lehalle BJP, Stoltz JF. Diabetic patients on Rutherford's stage 5 is the best indication of stem cell therapy in peripheral artery disease: a retrospective study on 367 patients. J Cell Immunother. 2018;4:18–21. doi: 10.1016/j.jocit.2018.09.005. DOI

Karetova D, Seifert B, Vojtiskova J, Roztocil K, Cifkova R. The Czech ABI Project—prevalence of peripheral arterial disease in patients at risk using the ankle-brachial index in general practice (a cross-sectional study) Neuro Endocrinol Lett. 2012;33(Suppl 2):32–37. PubMed

Young MJ, McCardle JE, Randall LE, Barclay JI. Improved survival of diabetic foot ulcer patients 1995–2008: possible impact of aggressive cardiovascular risk management. Diabetes Care. 2008;31:2143–2147. doi: 10.2337/dc08-1242. PubMed DOI PMC

Persiani F, Paolini A, Camilli D, Mascellari L, Platone A, Magenta A, et al. Peripheral blood mononuclear cells therapy for treatment of lower limb ischemia in diabetic patients: a single-center experience. Ann Vasc Surg. 2018;53:190–196. doi: 10.1016/j.avsg.2018.05.036. PubMed DOI

Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes‑associated critical limb ischemia: from basic studies to clinical outcomes (Review). Int J Mol Med 2021;48(3):173. 10.3892/ijmm.2021.5006. Epub 2021 Jul 19. PMID: 34278463; PMCID: PMC8285046. PubMed PMC

Kolvenbach R, Kreissig C, Cagiannos C, Afifi R, Schmaltz E. Intraoperative adjunctive stem cell treatment in patients with critical limb ischemia using a novel point-of-care device. Ann Vasc Surg. 2010;24:367–372. doi: 10.1016/j.avsg.2009.07.018. PubMed DOI

Teng YC, Porfirio-Sousa AL, Ribeiro GM, Arend MC, da Silva ML, Chen ES, et al. Analyses of the pericyte transcriptome in ischemic skeletal muscles. Stem Cell Res Ther. 2021;12:183. doi: 10.1186/s13287-021-02247-3. PubMed DOI PMC

Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–1857. doi: 10.1016/S0140-6736(11)61590-0. PubMed DOI PMC

Hu S, Liu S, Zheng Z, Yuan X, Li L, Lu M, et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2011;57:2409–2415. doi: 10.1016/j.jacc.2011.01.037. PubMed DOI

Meloni M, Giurato L, Izzo V, Stefanini M, Pampana E, Gandini R, et al. Long term outcomes of diabetic haemodialysis patients with critical limb ischemia and foot ulcer. Diabetes Res Clin Pract. 2016;116:117–122. doi: 10.1016/j.diabres.2016.04.030. PubMed DOI

Biancari F, Arvela E, Korhonen M, Soderstrom M, Halmesmaki K, Alback A, et al. End-stage renal disease and critical limb ischemia: a deadly combination? Scand J Surg. 2012;101:138–143. doi: 10.1177/145749691210100211. PubMed DOI

Dubsky M, Jirkovska A, Bem R, Nemcova A, Fejfarova V, Hazdrova J, et al. Impact of severe diabetic kidney disease on the clinical outcome of autologous cell therapy in people with diabetes and critical limb ischaemia. Diabet Med. 2019;36:1133–1140. doi: 10.1111/dme.13985. PubMed DOI

Herzog CA, Asinger RW, Berger AK, Charytan DM, Diez J, Hart RG, et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2011;80:572–586. doi: 10.1038/ki.2011.223. PubMed DOI

Garimella PS, Balakrishnan P, Correa A, Poojary P, Annapureddy N, Chauhan K, et al. Nationwide trends in hospital outcomes and utilization after lower limb revascularization in patients on hemodialysis. JACC Cardiovasc Interv. 2017;10:2101–2110. doi: 10.1016/j.jcin.2017.05.050. PubMed DOI PMC

Dubsky M, Fejfarova V, Bem R, Jirkovska A, Nemcova A, Sutoris K, et al. Main factors predicting nonresponders to autologous cell therapy for critical limb ischemia in patients with diabetic foot. Angiology. 2021;72:861–866. doi: 10.1177/00033197211005614. PubMed DOI

Liotta F, Annunziato F, Castellani S, Boddi M, Alterini B, Castellini G, et al. therapeutic efficacy of autologous non-mobilized enriched circulating endothelial progenitors in patients with critical limb ischemia—the SCELTA Trial. Circ J. 2018;82:1688–1698. doi: 10.1253/circj.CJ-17-0720. PubMed DOI

Moriya J, Minamino T, Tateno K, Shimizu N, Kuwabara Y, Sato Y, et al. Long-term outcome of therapeutic neovascularization using peripheral blood mononuclear cells for limb ischemia. Circ Cardiovasc Interv. 2009;2:245–254. doi: 10.1161/CIRCINTERVENTIONS.108.799361. PubMed DOI

Gemmati D, Serino ML, Trivellato C, Fiorini S, Scapoli GL. C677T substitution in the methylenetetrahydrofolate reductase gene as a risk factor for venous thrombosis and arterial disease in selected patients. Haematologica. 1999;84:824–828. PubMed

Pan T, Liu H, Fang Y, Wei Z, Gu S, Fang G, et al. Predictors of responders to mononuclear stem cell-based therapeutic angiogenesis for no-option critical limb ischemia. Stem Cell Res Ther. 2019;10:15. doi: 10.1186/s13287-018-1117-5. PubMed DOI PMC

Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, et al. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther. 2016;7:116. doi: 10.1186/s13287-016-0379-z. PubMed DOI PMC

Attanasio S, Snell J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev. 2009;17:115–120. doi: 10.1097/CRD.0b013e318199e9b7. PubMed DOI

Murphy MP, Lawson JH, Rapp BM, Dalsing MC, Klein J, Wilson MG, et al. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg. 2011;53(1565–1574):e1561. PubMed PMC

Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation. 2008;118:9–16. doi: 10.1161/CIRCULATIONAHA.108.784371. PubMed DOI

Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25:829–848. doi: 10.3727/096368915X689622. PubMed DOI

Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15:641–648. doi: 10.1016/j.jcyt.2013.02.006. PubMed DOI PMC

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Zhang JC, Zheng GF, Wu L, Ou Yang LY, Li WX. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Braz J Med Biol Res. 2014;47:886–894. doi: 10.1590/1414-431X20143765. PubMed DOI PMC

Trounson A, McDonald C. Stem Cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22. doi: 10.1016/j.stem.2015.06.007. PubMed DOI

Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7. doi: 10.1186/s13287-015-0271-2. PubMed DOI PMC

Sui BD, Zheng CX, Li M, Jin Y, Hu CH. Epigenetic regulation of mesenchymal stem cell homeostasis. Trends Cell Biol. 2020;30:97–116. doi: 10.1016/j.tcb.2019.11.006. PubMed DOI

Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92:26–36. doi: 10.1016/j.diabres.2010.12.010. PubMed DOI

Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Mesenchymal stem cell-based therapy for non-healing wounds due to chronic limb-threatening ischemia: a review of preclinical and clinical studies. Front Cardiovasc Med. 2023;10:1113982. doi: 10.3389/fcvm.2023.1113982. PubMed DOI PMC

Parikh PP, Liu ZJ, Velazquez OC. A molecular and clinical review of stem cell therapy in critical limb ischemia. Stem Cells Int. 2017;2017:3750829. doi: 10.1155/2017/3750829. PubMed DOI PMC

Kulwas A, Drela E, Jundzill W, Goralczyk B, Ruszkowska-Ciastek B, Rosc D. Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications. J Diabetes Complications. 2015;29:686–690. doi: 10.1016/j.jdiacomp.2015.03.013. PubMed DOI

Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005;37:715–719. doi: 10.1016/j.biocel.2004.08.010. PubMed DOI

Garrity MM, Gibbons SJ, Smyrk TC, Vanderwinden JM, Gomez-Pinilla PJ, Nehra A, et al. Diagnostic challenges of motility disorders: optimal detection of CD117+ interstitial cells of Cajal. Histopathology. 2009;54:286–294. doi: 10.1111/j.1365-2559.2008.03189.x. PubMed DOI PMC

Li PH, Liu LH, Chang CC, Gao R, Leung CH, Ma DL, et al. Silencing stem cell factor gene in fibroblasts to regulate paracrine factor productions and enhance c-Kit expression in melanocytes on melanogenesis. Int J Mol Sci. 2018;19:1475. doi: 10.3390/ijms19051475. PubMed DOI PMC

Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, et al. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril. 2014;102(566–580):e567. PubMed PMC

Duong KL, Das S, Yu S, Barr JY, Jena S, Kim E, et al. Identification of hematopoietic-specific regulatory elements from the CD45 gene and use for lentiviral tracking of transplanted cells. Exp Hematol. 2014;42(761–772):e761–e710. doi: 10.1016/j.exphem.2014.05.005. PubMed DOI PMC

Beare A, Stockinger H, Zola H, Nicholson I. Monoclonal antibodies to human cell surface antigens. Curr Protoc Immunol. 2008;Appendix 4:4A. PubMed PMC

Johnson BW, Achyut BR, Fulzele S, Mondal AK, Kolhe R, Arbab AS. Delineating pro-angiogenic myeloid cells in cancer therapy. Int J Mol Sci. 2018;19:2565. doi: 10.3390/ijms19092565. PubMed DOI PMC

Spigoni V, Fantuzzi F, Carubbi C, Pozzi G, Masselli E, Gobbi G, et al. Sodium-glucose cotransporter 2 inhibitors antagonize lipotoxicity in human myeloid angiogenic cells and ADP-dependent activation in human platelets: potential relevance to prevention of cardiovascular events. Cardiovasc Diabetol. 2020;19:46. doi: 10.1186/s12933-020-01016-5. PubMed DOI PMC

Wong CWT, Sawhney A, Wu Y, Mak YW, Tian XY, Chan HF, et al. Sourcing of human peripheral blood-derived myeloid angiogenic cells under xeno-free conditions for the treatment of critical limb ischemia. Stem Cell Res Ther. 2022;13:419. doi: 10.1186/s13287-022-03095-5. PubMed DOI PMC

de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res. 2013;19:3360–3368. doi: 10.1158/1078-0432.CCR-13-0462. PubMed DOI

Sandhu K, Mamas M, Butler R. Endothelial progenitor cells: exploring the pleiotropic effects of statins. World J Cardiol. 2017;9:1–13. doi: 10.4330/wjc.v9.i1.1. PubMed DOI PMC

McDonald AI, Shirali AS, Aragon R, Ma F, Hernandez G, Vaughn DA, et al. Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell. 2018;23(210–225):e216. PubMed PMC

Singhal M, Liu X, Inverso D, Jiang K, Dai J, He H, et al. Endothelial cell fitness dictates the source of regenerating liver vasculature. J Exp Med. 2018;215:2497–2508. doi: 10.1084/jem.20180008. PubMed DOI PMC

Scatena A, Petruzzi P, Maioli F, Lucaroni F, Ambrosone C, Ventoruzzo G, et al. Autologous peripheral blood mononuclear cells for limb salvage in diabetic foot patients with no-option critical limb ischemia. J Clin Med. 2021;10:2213. doi: 10.3390/jcm10102213. PubMed DOI PMC

Troisi N, D'Oria M, Fernandes EFJ, Angelides N, Avgerinos E, Liapis C, et al. International Union of Angiology Position Statement on no-option chronic limb threatening ischemia. Int Angiol. 2022;41:382–404. doi: 10.23736/S0392-9590.22.04933-1. PubMed DOI

See more in PubMed

ClinicalTrials.gov
NCT03968198, NCT04466007, NCT04661644

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...