"Salicylic Acid Mutant Collection" as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-05151S
Grantová Agentura České Republiky
LM2018100
MEYS
PPPLZ, TK 919220
Czech Academy of Sciences,
51810647
International Visegrad Fund
Student grant, GAUK_992416
Charles University in Prague
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
31861218
PubMed Central
PMC6941003
DOI
10.3390/ijms20246365
PII: ijms20246365
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis mutants, Salicylic acid, gene transcription, growth, light,
- MeSH
- Arabidopsis genetika metabolismus mikrobiologie MeSH
- interakce hostitele a patogenu MeSH
- kyselina salicylová metabolismus MeSH
- mutace * MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce genetika MeSH
- vývoj rostlin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina salicylová MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
The phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences. However, some genetic/metabolic variations can also result in SA overaccumulation in plants, even in basal conditions. To date, more than forty Arabidopsis thaliana mutants have been described as having enhanced endogenous SA levels or constitutively activated SA signalling pathways. In this study, we established a collection of mutants containing different SA levels due to diverse genetic modifications and distinct gene functions. We chose prototypic SA-overaccumulators (SA-OAs), such as bon1-1, but also "non-typical" ones such as exo70b1-1; the selection of OA is accompanied by their crosses with SA-deficient lines. Here, we extensively studied the plant development and SA level/signalling under various growth conditions in soil and in vitro, and showed a strong negative correlation between rosette size, SA content and PR1/ICS1 transcript signature. SA-OAs (namely cpr5, acd6, bon1-1, fah1/fah2 and pi4kβ1β2) had bigger rosettes under high light conditions, whereas WT plants did not. Our data provide new insights clarifying a link between SA and plant behaviour under environmental stresses. The presented SA mutant collection is thus a suitable tool to shed light on the mechanisms underlying trade-offs between growth and defence in plants.
Department of Biochemistry Faculty of Science Charles University Prague 11000 Prague Czech Republic
Genetics Faculty of Biology Ludwig Maximilians University of Munich D 82152 Martinsried Germany
Institute of Experimental Botany of the Czech Academy of Sciences 16502 Prague Czech Republic
Zobrazit více v PubMed
Rajjou L., Belghazi M., Huguet R., Robin C., Moreau A., Job C., Job D. Proteomic Investigation of the Effect of Salicylic Acid on Arabidopsis Seed Germination and Establishment of Early Defense Mechanisms. Plant Physiol. 2006;141:910–923. doi: 10.1104/pp.106.082057. PubMed DOI PMC
Vanacker H., Lu H., Rate D.N., Greenberg J.T. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. Cell Mol. Biol. 2001;28:209–216. doi: 10.1046/j.1365-313X.2001.01158.x. PubMed DOI
Martínez C., Pons E., Prats G., León J. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. Cell Mol. Biol. 2004;37:209–217. doi: 10.1046/j.1365-313X.2003.01954.x. PubMed DOI
Jayakannan M., Bose J., Babourina O., Rengel Z., Shabala S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J. Exp. Bot. 2013;64:2255–2268. doi: 10.1093/jxb/ert085. PubMed DOI PMC
Bravo R.E., Chen G., Grosser K., Dam N.M.V., Leiss K.A., Klinkhamer P.G.L. Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. Plant Signal. Behav. 2019;14:e1581560. doi: 10.1080/15592324.2019.1581560. PubMed DOI PMC
Klessig D.F., Choi H.W., Dempsey D.A. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Mol. Plant Microbe Interact. MPMI. 2018;31:871–888. doi: 10.1094/MPMI-03-18-0067-CR. PubMed DOI
Zhang Y., Li X. Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 2019;50:29–36. doi: 10.1016/j.pbi.2019.02.004. PubMed DOI
Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–565. doi: 10.1038/35107108. PubMed DOI
Delaney T.P., Uknes S., Vernooij B., Friedrich L.B., Weymann K., Negrotto D.V., Gaffney T., Gut-Rella M., Kessmann H., Ward E., et al. A central role of salicylic Acid in plant disease resistance. Science. 1994;266:1247–1250. doi: 10.1126/science.266.5188.1247. PubMed DOI
Fragnière C., Serrano M., Abou-Mansour E., Métraux J.P., L’Haridon F. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 2011;585:1847–1852. doi: 10.1016/j.febslet.2011.04.039. PubMed DOI
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005;43:205–227. doi: 10.1146/annurev.phyto.43.040204.135923. PubMed DOI
Canet J.V., Dobón A., Roig A., Tornero P. Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ. 2010;33:1911–1922. doi: 10.1111/j.1365-3040.2010.02194.x. PubMed DOI
Ding Y., Shaholli D., Mou Z. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. Front. Plant Sci. 2015;5:763. doi: 10.3389/fpls.2014.00763. PubMed DOI PMC
Rivas-San Vicente M., Plasencia J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011;62:3321–3338. doi: 10.1093/jxb/err031. PubMed DOI
Li Y., Yang S., Yang H., Hua J. The TIR-NB-LRR Gene SNC1 Is Regulated at the Transcript Level by Multiple Factors. Mol. Plant. Microbe Interact. 2007;20:1449–1456. doi: 10.1094/MPMI-20-11-1449. PubMed DOI
Lin F., Krishnamoorthy P., Schubert V., Hause G., Heilmann M., Heilmann I. A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J. 2019;38:e100303. doi: 10.15252/embj.2018100303. PubMed DOI PMC
Kalachova T., Janda M., Šašek V., Ortmannová J., Nováková P., Dobrev I.P., Kravets V., Guivarc’h A., Moura D., Burketová L., et al. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann. Bot. 2019 doi: 10.1093/aob/mcz112. PubMed DOI PMC
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., Höftberger M., Žárský V. Arabidopsis Exocyst Subcomplex Containing Subunit EXO70B1 Is Involved in Autophagy-Related Transport to the Vacuole. Traffic. 2013;14:1155–1165. doi: 10.1111/tra.12101. PubMed DOI
König S., Feussner K., Schwarz M., Kaever A., Iven T., Landesfeind M., Ternes P., Karlovsky P., Lipka V., Feussner I. Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol. 2012;196:1086–1097. doi: 10.1111/j.1469-8137.2012.04351.x. PubMed DOI
Yoshida S., Ito M., Nishida I., Watanabe A. Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. Plant J. 2002;29:427–437. doi: 10.1046/j.0960-7412.2001.01228.x. PubMed DOI
Rate D.N., Cuenca J.V., Bowman G.R., Guttman D.S., Greenberg J.T. The Gain-of-Function Arabidopsis acd6 Mutant Reveals Novel Regulation and Function of the Salicylic Acid Signaling Pathway in Controlling Cell Death, Defenses, and Cell Growth. Plant Cell. 1999;11:1695–1708. doi: 10.1105/tpc.11.9.1695. PubMed DOI PMC
Preuss M.L., Schmitz A.J., Thole J.M., Bonner H.K.S., Otegui M.S., Nielsen E. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 2006;172:991–998. doi: 10.1083/jcb.200508116. PubMed DOI PMC
Vorwerk S., Schiff C., Santamaria M., Koh S., Nishimura M., Vogel J., Somerville C., Somerville S. EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol. 2007;7:35. doi: 10.1186/1471-2229-7-35. PubMed DOI PMC
Nishimura M.T., Stein M., Hou B.H., Vogel J.P., Edwards H., Somerville S.C. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science. 2003;301:969–972. doi: 10.1126/science.1086716. PubMed DOI
Šašek V., Janda M., Delage E., Puyaubert J., Guivarc’h A., Maseda E.L., Dobrev P.I., Caius J., Bóka K., Valentová O., et al. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. New Phytol. 2014;203:805–816. doi: 10.1111/nph.12822. PubMed DOI
Nawrath C., Métraux J.P. Salicylic Acid Induction—Deficient Mutants of Arabidopsis Express PR-2 and PR-5 and Accumulate High Levels of Camalexin after Pathogen Inoculation. Plant Cell. 1999;11:1393–1404. PubMed PMC
Maxwell K., Johnson G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI
Hendrickson L., Furbank R.T., Chow W.S. A Simple Alternative Approach to Assessing the Fate of Absorbed Light Energy Using Chlorophyll Fluorescence. Photosynth. Res. 2004;82:73. doi: 10.1023/B:PRES.0000040446.87305.f4. PubMed DOI
Yokawa K., Kagenishi T., Kawano T., Mancuso S., Baluška F. Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signal. Behav. 2011;6:1460–1464. doi: 10.4161/psb.6.10.18165. PubMed DOI PMC
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Pallero-Baena M., Navarro-Neila S., Téllez-Robledo B., Garcia-Mina J.M., Baigorri R., Gallego F.J., Pozo J.C. D-Root: A system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015;84:244–255. doi: 10.1111/tpj.12998. PubMed DOI
Janda M., Ruelland E. Magical mystery tour: Salicylic acid signalling. Environ. Exp. Bot. 2015;114:117–128. doi: 10.1016/j.envexpbot.2014.07.003. DOI
Nie H., Wu Y., Yao C., Tang D. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J. Genet. Genom. Yi Chuan Xue Bao. 2011;38:137–148. doi: 10.1016/j.jgg.2011.03.001. PubMed DOI
Smith L.M., Bomblies K., Weigel D. Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLoS Genet. 2011;7:e1002164. doi: 10.1371/journal.pgen.1002164. PubMed DOI PMC
Zhu W., Zaidem M., Van de Weyer A.L., Gutaker R.M., Chae E., Kim S.T., Bemm F., Li L., Todesco M., Schwab R., et al. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLOS Genet. 2018;14:e1007628. doi: 10.1371/journal.pgen.1007628. PubMed DOI PMC
Miura K., Lee J., Miura T., Hasegawa P.M. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol. 2010;51:103–113. doi: 10.1093/pcp/pcp171. PubMed DOI
Todesco M., Kim S.T., Chae E., Bomblies K., Zaidem M., Smith L.M., Weigel D., Laitinen R.A.E. Activation of the Arabidopsis thaliana Immune System by Combinations of Common ACD6 Alleles. PLoS Genet. 2014;10:e1004459. doi: 10.1371/journal.pgen.1004459. PubMed DOI PMC
Ellinger D., Naumann M., Falter C., Zwikowics C., Jamrow T., Manisseri C., Somerville S.C., Voigt C.A. Elevated Early Callose Deposition Results in Complete Penetration Resistance to Powdery Mildew in Arabidopsis. Plant Physiol. 2013;161:1433–1444. doi: 10.1104/pp.112.211011. PubMed DOI PMC
Khurana J.P., Cleland C.F. Role of Salicylic Acid and Benzoic Acid in Flowering of a Photoperiod-Insensitive Strain, Lemna paucicostata LP6 1. Plant Physiol. 1992;100:1541–1546. doi: 10.1104/pp.100.3.1541. PubMed DOI PMC
Martínez-Medina A., Appels F.V.W., van Wees S.C.M. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signal. Behav. 2017;12:e1345404. doi: 10.1080/15592324.2017.1345404. PubMed DOI PMC
Badri D.V., Loyola-Vargas V.M., Du J., Stermitz F.R., Broeckling C.D., Iglesias-Andreu L., Vivanco J.M. Transcriptome analysis of Arabidopsis roots treated with signaling compounds: A focus on signal transduction, metabolic regulation and secretion. New Phytol. 2008;179:209–223. doi: 10.1111/j.1469-8137.2008.02458.x. PubMed DOI
Pasternak T., Groot E.P., Kazantsev F.V., Teale W., Omelyanchuk N., Kovrizhnykh V., Palme K., Mironova V.V. Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiol. 2019;180:1725–1739. doi: 10.1104/pp.19.00130. PubMed DOI PMC
Liu P., Xu Z.S., Pan-Pan L., Hu D., Chen M., Li L.C., Ma Y.Z. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J. Exp. Bot. 2013;64:2915–2927. doi: 10.1093/jxb/ert133. PubMed DOI PMC
Borghi M., Rus A., Salt D.E. Loss-of-Function of Constitutive Expresser of Pathogenesis Related Genes5 Affects Potassium Homeostasis in Arabidopsis thaliana. PLoS ONE. 2011;6:e26360. doi: 10.1371/journal.pone.0026360. PubMed DOI PMC
Gao G., Zhang S., Wang C., Yang X., Wang Y., Su X., Du J., Yang C. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. PLoS ONE. 2011;6:e19406. doi: 10.1371/journal.pone.0019406. PubMed DOI PMC
Okuma E., Nozawa R., Murata Y., Miura K. Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. Plant Signal. Behav. 2014;9 doi: 10.4161/psb.28085. PubMed DOI PMC
Aki T., Konishi M., Kikuchi T., Fujimori T., Yoneyama T., Yanagisawa S. Distinct modulations of the hexokinase1-mediated glucose response and hexokinase1-independent processes by HYS1/CPR5 in Arabidopsis. J. Exp. Bot. 2007;58:3239–3248. doi: 10.1093/jxb/erm169. PubMed DOI
Miller R.N.G., Costa Alves G.S., Van Sluys M.A. Plant immunity: Unravelling the complexity of plant responses to biotic stresses. Ann. Bot. 2017;119:681–687. doi: 10.1093/aob/mcw284. PubMed DOI PMC
Wang W., Wang Z.Y. At the intersection of plant growth and immunity. Cell Host Microbe. 2014;15:400–402. doi: 10.1016/j.chom.2014.03.014. PubMed DOI PMC
Karasov T.L., Chae E., Herman J.J., Bergelson J. Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell. 2017;29:666–680. doi: 10.1105/tpc.16.00931. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Kalachova T., Leontovyčová H., Iakovenko O., Pospíchalová R., Maršík P., Klouček P., Janda M., Valentová O., Kocourková D., Martinec J., et al. Interplay between phosphoinositides and actin cytoskeleton in the regulation of immunity related responses in Arabidopsis thaliana seedlings. Environ. Exp. Bot. 2019;167:103867.
Huang J., Gu M., Lai Z., Fan B., Shi K., Zhou Y.H., Yu J.Q., Chen Z. Functional Analysis of the Arabidopsis PAL Gene Family in Plant Growth, Development, and Response to Environmental Stress. Plant Physiol. 2010;153:1526–1538. doi: 10.1104/pp.110.157370. PubMed DOI PMC
Simko W. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84) [(accessed on 2 August 2018)]; Available online: https://github.com/taiyun/corrplot.
Light Quality and Intensity Modulate Cold Acclimation in Arabidopsis