Exocyst subunits EXO70B1 and B2 contribute to stomatal dynamics and cell wall modifications

. 2025 ; 16 () : 1694769. [epub] 20251217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41479531

INTRODUCTION: Based on previous reports of defense-related defects in the Arabidopsis loss-of-function (LOF) mutants of the EXO70B1 and EXO70B2 exocyst subunits, we investigated the underlying causes of these phenotypes. METHODS: We analyzed stomatal aperture states in both young and adult plants. As the exocyst is involved in the secretion to the cell wall, we examined cell wall composition, and we correlated these findings via a comprehensive mRNA expression analysis. RESULTS: Our results revealed and discovered a more closed initial state of stomatal opening in exo70B mutants, as well as altered methylation and acetylation modifications of pectin and hemicellulose in the studied mutant lines. These changes in cell wall modifications may contribute to both compromised stomatal aperture-dependent and stomatal aperture-independent defense responses, as well as to the transcriptional activation of defense pathways observed in non-infected mutant plants at adult developmental stages. Several candidate genes involved in these processes were pinpointed using RNA-seq analysis. DISCUSSION: Interestingly, although the primary phenotypic and RNA-seq deviations in young mutant lines may be specific for each of the two EXO70B mutant lines, they exhibit converging gene expression profiles in later developmental stages. This convergence may reflect the shared evolutionary origin of the two Brassicaceae EXO70 isoforms by duplication from a common ancestral gene.

Zobrazit více v PubMed

Acheampong A. K., Shanks C., Cheng C.-Y., Schaller G. E., Dagdas Y., Kieber J. J. (2020). EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proc. Natl. Acad. Sci. 117, 27034–27043. doi:  10.1073/pnas.2013161117, PMID: PubMed DOI PMC

Ahmed A. E. R., Labavitch J. M. (1978). A SIMPLIFIED METHOD FOR ACCURATE DETERMINATION OF CELL WALL URONIDE CONTENT. J. Food Biochem. 1, 361–365. doi:  10.1111/j.1745-4514.1978.tb00193.x DOI

Amsbury S., Hunt L., Elhaddad N., Baillie A., Lundgren M., Verhertbruggen Y., et al. (2016). Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr. Biol. 26, 2899–2906. doi:  10.1016/j.cub.2016.08.021, PMID: PubMed DOI PMC

Arzt M., Deschamps J., Schmied C., Pietzsch T., Schmidt D., Tomancak P., et al. (2022). LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. 4. doi:  10.3389/fcomp.2022.777728 DOI

Atmodjo M. A., Sakuragi Y., Zhu X., Burrell A. J., Mohanty S. S., Atwood J. A., et al. (2011). Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc. Natl. Acad. Sci. U.S.A. 108, 20225–20230. doi:  10.1073/pnas.1112816108, PMID: PubMed DOI PMC

Bacete L., Mélida H., Miedes E., Molina A. (2018). Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93, 614–636. doi:  10.1111/tpj.13807, PMID: PubMed DOI

Bethke G., Grundman R. E., Sreekanta S., Truman W., Katagiri F., Glazebrook J. (2014). Arabidopsis PECTIN METHYLESTERASEs contribute to immunity against Pseudomonas syringae. Plant Physiol. 164, 1093–1107. doi:  10.1104/pp.113.227637, PMID: PubMed DOI PMC

Bodemann B. O., Orvedahl A., Cheng T., Ram R. R., Ou Y.-H., Formstecher E., et al. (2011). RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 144, 253–267. doi:  10.1016/j.cell.2010.12.018, PMID: PubMed DOI PMC

Boyd C., Hughes T., Pypaert M., Novick P. (2004). Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167, 889–901. doi:  10.1083/jcb.200408124, PMID: PubMed DOI PMC

Brillada C., Teh O.-K., Ditengou F. A., Lee C.-W., Klecker T., Saeed B., et al. (2021). Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. Plant Cell. 33, 404–419. doi:  10.1093/plcell/koaa022, PMID: PubMed DOI PMC

Cole R. A., Synek L., Zarsky V., Fowler J. E. (2005). SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 138, 2005–2018. doi:  10.1104/pp.105.062273, PMID: PubMed DOI PMC

Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., et al. (2012). Evolution of the land plant exocyst complexes. Front. Plant Sci. 3. doi:  10.3389/fpls.2012.00159, PMID: PubMed DOI PMC

Daniel B., Pavkov-Keller T., Steiner B., Dordic A., Gutmann A., Nidetzky B., et al. (2015). Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. J. Biol. Chem. 290, 18770–18781. doi:  10.1074/jbc.M115.659631, PMID: PubMed DOI PMC

De Caroli M., Manno E., Piro G., Lenucci M. S. (2021). Ride to cell wall: Arabidopsis XTH11, XTH29 and XTH33 exhibit different secretion pathways and responses to heat and drought stress. Plant J. 107, 448–466. doi:  10.1111/tpj.15301, PMID: PubMed DOI PMC

Del Corpo D., Fullone M. R., Miele R., Lafond M., Pontiggia D., Grisel S., et al. (2020). AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea. Mol. Plant Pathol. 21, 1620–1633. doi:  10.1111/mpp.13002, PMID: PubMed DOI PMC

de Souza A., Hull P. A., Gille S., Pauly M. (2014). Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. Planta. 240, 1123–1138. doi:  10.1007/s00425-014-2139-6, PMID: PubMed DOI PMC

Drdová E. J., Synek L., Pečenková T., Hála M., Kulich I., Fowler J. E., et al. (2013). The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J. 73, 709–719. doi:  10.1111/tpj.12074, PMID: PubMed DOI

Drs M., Krupař P., Škrabálková E., Haluška S., Müller K., Potocká A., et al. (2025). Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. Plant Cell Environ. 48, 451–469. doi:  10.1111/pce.15111, PMID: PubMed DOI PMC

Du J., Ruan M., Li X., Lan Q., Zhang Q., Hao S., et al. (2022). Pectin methyltransferase QUASIMODO2 functions in the formation of seed coat mucilage in Arabidopsis. J. Plant Physiol. 274, 153709. doi:  10.1016/j.jplph.2022.153709, PMID: PubMed DOI

Elias M., Drdova E., Ziak D., Bavlnka B., Hala M., Cvrckova F., et al. (2003). The exocyst complex in plants. Cell Biology International. doi:  10.1016/S1065-6995(02)00349-9, PMID: PubMed DOI

Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., et al. (2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22, 3053–3065. doi:  10.1105/tpc.110.074351, PMID: PubMed DOI PMC

Fernandez A. I., Beeckman T.. (2020). An MAP Kinase Cascade Downstream of RGF/GLV Peptides and Their RGI Receptors Regulates Root Development. Mol. Plant. 13, 1542–1544. doi:  10.1016/j.molp.2020.10.009, PMID: PubMed DOI

Fry S. C., York W. S., Albersheim P., Darvill A., Hayashi T., Joseleau J.-P., et al. (1993). An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum. 89, 1–3. doi:  10.1111/j.1399-3054.1993.tb01778.x DOI

Gille S., Pauly M. (2012). O-acetylation of plant cell wall polysaccharides. Front. Plant Sci. 3. doi:  10.3389/fpls.2012.00012, PMID: PubMed DOI PMC

Hála M., Cole R., Synek L., Drdová E., Pecenková T., Nordheim A., et al. (2008). An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell. 20, 1330–1345. doi:  10.1105/tpc.108.059105, PMID: PubMed DOI PMC

Hann C. T., Bequette C. J., Dombrowski J. E., Stratmann J. W. (2014). Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns. Front. Plant Sci. 5. doi:  10.3389/fpls.2014.00550, PMID: PubMed DOI PMC

Harholt J., Jensen J. K., Sørensen S. O., Orfila C., Pauly M., Scheller H. V. (2006). ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol. 140, 49–58. doi:  10.1104/pp.105.072744, PMID: PubMed DOI PMC

Harris C. J., Amtmann A., Ton J. (2023). Epigenetic processes in plant stress priming: Open questions and new approaches. Curr. Opin. Plant Biol. 75, 102432. doi:  10.1016/j.pbi.2023.102432, PMID: PubMed DOI

He B., Xi F., Zhang X., Zhang J., Guo W. (2007). Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 26, 4053–4065. doi:  10.1038/sj.emboj.7601834, PMID: PubMed DOI PMC

Hedrich R., Geiger D. (2017). Biology of SLAC1-type anion channels – from nutrient uptake to stomatal closure. New Phytol. 216, 46–61. doi:  10.1111/nph.14685, PMID: PubMed DOI

Hématy K., De Bellis D., Wang X., Mähönen A. P., Geldner N. (2022). Analysis of exocyst function in endodermis reveals its widespread contribution and specificity of action. Plant Physiol. 189, 557–566. doi:  10.1093/plphys/kiac019, PMID: PubMed DOI PMC

Hong D., Jeon B. W., Kim S. Y., Hwang J.-U., Lee Y. (2016). The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. New Phytol. 209, 624–635. doi:  10.1111/nph.13625, PMID: PubMed DOI

Hsu S.-C., TerBush D., Abraham M., Guo W. (2004). “ The Exocyst Complex in Polarized Exocytosis,” in International Review of Cytology ( Elsevier: San Diego, California, USA: ), 243–265. doi:  10.1016/S0074-7696(04)33006-8, PMID: PubMed DOI

Huang D. W., Sherman B. T., Lempicki R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. doi:  10.1038/nprot.2008.211, PMID: PubMed DOI

Jakobson L., Lindgren L. O., Verdier G., Laanemets K., Brosché M., Beisson F., et al. (2016). BODYGUARD is required for the biosynthesis of cutin in Arabidopsis. New Phytol. 211, 614–626. doi:  10.1111/nph.13924, PMID: PubMed DOI

Janková Drdová E., Klejchová M., Janko K., Hála M., Soukupová H., Cvrćková F., et al. (2019). Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function. J. Exp. Bot. 70, 1255–1265. doi:  10.1093/jxb/erz005, PMID: PubMed DOI PMC

Ji C., Zhou J., Guo R., Lin Y., Kung C.-H., Hu S., et al. (2020). AtNBR1 is a selective autophagic receptor for atExo70E2 in arabidopsis. Plant Physiol. 184, 777–791. doi:  10.1104/pp.20.00470, PMID: PubMed DOI PMC

Kalmbach L., Hématy K., De Bellis D., Barberon M., Fujita S., Ursache R., et al. (2017). Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nat. Plants. 3, 17058. doi:  10.1038/nplants.2017.58, PMID: PubMed DOI

Koers S., Guzel-Deger A., Marten I., Roelfsema M. R. G. (2011). Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J. 68, 670–680. doi:  10.1111/j.1365-313X.2011.04719.x, PMID: PubMed DOI

Kubátová Z., Pejchar P., Potocký M., Sekereš J., Žárský V., Kulich I. (2019). Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. Int. J. Mol. Sci. 20 (15), 3803. doi:  10.3390/ijms20153803, PMID: PubMed DOI PMC

Kulich I., Cole R., Drdová E., Cvrcková F., Soukup A., Fowler J., et al. (2010). Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 188, 615–625. doi:  10.1111/j.1469-8137.2010.03372.x, PMID: PubMed DOI

Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., et al. (2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 14, 1155–1165. doi:  10.1111/tra.12101, PMID: PubMed DOI

Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. (2015). Cell wall maturation of arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 168, 120–131. doi:  10.1104/pp.15.00112, PMID: PubMed DOI PMC

Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., et al. (2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 176, 2040–2051. doi:  10.1104/pp.17.01693, PMID: PubMed DOI PMC

Lacombe S., Rougon-Cardoso A., Sherwood E., Peeters N., Dahlbeck D., van Esse H. P., et al. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28, 365–369. doi:  10.1038/nbt.1613, PMID: PubMed DOI

Lionetti V., Fabri E., De Caroli M., Hansen A. R., Willats W. G. T., Piro G., et al. (2017). Three pectin methylesterase inhibitors protect cell wall integrity for arabidopsis immunity to Botrytis. Plant Physiol. 173, 1844–1863. doi:  10.1104/pp.16.01185, PMID: PubMed DOI PMC

Lionetti V., Raiola A., Camardella L., Giovane A., Obel N., Pauly M., et al. (2007). Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol. 143, 1871–1880. doi:  10.1104/pp.106.090803, PMID: PubMed DOI PMC

Liu J., Zuo X., Yue P., Guo W. (2007). Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell. 18 (11), 4483–4492. doi:  10.1091/mbc.E07-05-0461, PMID: PubMed DOI PMC

Marković V., Cvrčková F., Potocký M., Kulich I., Pejchar P., Kollárová E., et al. (2020). EXO70A2 is critical for exocyst complex function in pollen development. Plant Physiol. 184, 1823–1839. doi:  10.1104/pp.19.01340, PMID: PubMed DOI PMC

Marković V., Kulich I., Žárský V. (2021). Functional specialization within the EXO70 gene family in arabidopsis. Int. J. Mol. Sci. 22, 7595. doi:  10.3390/ijms22147595, PMID: PubMed DOI PMC

McFarlane H. E., Gendre D., Western T. L. (2014). Seed coat ruthenium red staining assay. Bio-protocol. 4. doi:  10.21769/BioProtoc.1096 DOI

Mravec J., Kračun S. K., Rydahl M. G., Westereng B., Miart F., Clausen M. H., et al. (2014). Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development. 141, 4841–4850. doi:  10.1242/dev.113365, PMID: PubMed DOI

Nielsen M. E., Thordal-Christensen H. (2013). Transcytosis shuts the door for an unwanted guest. Trends Plant Sci. 18, 611–616. doi:  10.1016/j.tplants.2013.06.002, PMID: PubMed DOI

Ortmannová J., Sekereš J., Kulich I., Šantrůček J., Dobrev P., Žárský V., et al. (2022). Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. J. Exp. Bot. 73, 742–755. doi:  10.1093/jxb/erab457, PMID: PubMed DOI

Paterlini A., Sechet J., Immel F., Grison M. S., Pilard S., Pelloux J., et al. (2022). Enzymatic fingerprinting reveals specific xyloglucan and pectin signatures in the cell wall purified with primary plasmodesmata. Front. Plant Sci. 13. doi:  10.3389/fpls.2022.1020506, PMID: PubMed DOI PMC

Patro R., Duggal G., Love M. I., Irizarry R. A., Kingsford C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419. doi:  10.1038/nmeth.4197, PMID: PubMed DOI PMC

Pauly M., Keegstra K. (2016). Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu. Rev. Plant Biol. 67, 235–259. doi:  10.1146/annurev-arplant-043015-112222, PMID: PubMed DOI

Pečenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., et al. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. J. Exp. Bot. 62, 2107–2116. doi:  10.1093/jxb/erq402, PMID: PubMed DOI PMC

Pečenková T., Potocká A., Potocký M., Ortmannová J., Drs M., Janková Drdová E., et al. (2020). Redundant and diversified roles among selected arabidopsis thaliana EXO70 paralogs during biotic stress responses. Front. Plant Sci. 11. doi:  10.3389/fpls.2020.00960, PMID: PubMed DOI PMC

Peng Y., Liu Y., Wang Y., Geng Z., Qin Y., Ma S. (2024). Stomatal maturomics: hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes. J. Genet. Genomics 51, 1286–1299. doi:  10.1016/j.jgg.2024.05.004, PMID: PubMed DOI

Pimentel H., Bray N. L., Puente S., Melsted P., Pachter L. (2017). Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods. 14, 687–690. doi:  10.1038/nmeth.4324, PMID: PubMed DOI

Pleskot R., Cwiklik L., Jungwirth P., Žárský V., Potocký M. (2015). Membrane targeting of the yeast exocyst complex. Biochim. Biophys. Acta (BBA) - Biomembranes. 1848, 1481–1489. doi:  10.1016/j.bbamem.2015.03.026, PMID: PubMed DOI

Pluhařová K., Leontovyčová H., Stoudková V., Pospíchalová R., Maršík P., Klouček P., et al. (2019). Salicylic acid mutant collection” as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. Int. J. Mol. Sci. 20, 6365. doi:  10.3390/ijms20246365, PMID: PubMed DOI PMC

Pogorelko G., Lionetti V., Fursova O., Sundaram R. M., Qi M., Whitham S. A., et al. (2013). Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant Physiol. 162, 9–23. doi:  10.1104/pp.113.214460, PMID: PubMed DOI PMC

Rutter B. D., Innes R. W. (2017). Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 173, 728–741. doi:  10.1104/pp.16.01253, PMID: PubMed DOI PMC

Sabol P., Kulich I., Žárský V. (2017). RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. J. Exp. Bot. 68, 3253–3265. doi:  10.1093/jxb/erx007, PMID: PubMed DOI PMC

Saccomanno A., Potocký M., Pejchar P., Hála M., Shikata H., Schwechheimer C., et al. (2020). Regulation of exocyst function in pollen tube growth by phosphorylation of exocyst subunit EXO70C2. Front. Plant Sci. 11. doi:  10.3389/fpls.2020.609600, PMID: PubMed DOI PMC

Scheller H. V., Ulvskov P. (2010). Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289. doi:  10.1146/annurev-arplant-042809-112315, PMID: PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: An open-source platform for biological-image analysis. 9 (7), 676–82. doi:  10.1038/nmeth.2019, PMID: PubMed DOI PMC

Schultink A., Naylor D., Dama M., Pauly M. (2015). The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol. 167, 1271–1283. doi:  10.1104/pp.114.256479, PMID: PubMed DOI PMC

Seo D. H., Ahn M. Y., Park K. Y., Kim E. Y., Kim W. T. (2016). The N-terminal UND motif of the arabidopsis U-box E3 ligase PUB18 is critical for the negative regulation of ABA-mediated stomatal movement and determines its ubiquitination specificity for exocyst subunit exo70B1. Plant Cell. 28, 2952–2973. doi:  10.1105/tpc.16.00347, PMID: PubMed DOI PMC

Song L., Florea L. (2015). Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48. doi:  10.1186/s13742-015-0089-y, PMID: PubMed DOI PMC

Stegmann M., Anderson R. G., Ichimura K., Pecenkova T., Reuter P., Zarsky V., et al. (2012). The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in arabidopsis. Plant Cell. 24, 4703–4716. doi:  10.1105/tpc.112.104463, PMID: PubMed DOI PMC

Stegmann M., Anderson R. G., Westphal L., Rosahl S., McDowell J. M., Trujillo M. (2013). The exocyst subunit PubMed DOI PMC

Swaminathan S., Reem N. T., Lionetti V., Zabotina O. A. (2021). Coexpression of fungal cell wall-modifying enzymes reveals their additive impact on arabidopsis resistance to the fungal pathogen, botrytis cinerea. Biol. (Basel) 10, 1070. doi:  10.3390/biology10101070, PMID: PubMed DOI PMC

Synek L., Pleskot R., Sekereš J., Serrano N., Vukašinović N., Ortmannová J., et al. (2021). Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc. Natl. Acad. Sci. U.S.A. 118, e2105287118. doi:  10.1073/pnas.2105287118, PMID: PubMed DOI PMC

Synek L., Schlager N., Eliáš M., Quentin M., Hauser M.-T., Žárský V. (2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48, 54–72. doi:  10.1111/j.1365-313X.2006.02854.x, PMID: PubMed DOI PMC

TerBush D. R., Maurice T., Roth D., Novick P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494. doi:  10.1002/j.1460-2075.1996.tb01039.x PubMed DOI PMC

Thibault J.-F.. (1979). Automatisation du dosage des substances pectiques par la méthode au méta-hydroxydiphenyl. Lebensmittel-Wissenschaft & Technologie 12, 247–251. doi:  10.1016/j.molp.2020.10.009, PMID: PubMed DOI

Vogel J. P., Raab T. K., Somerville C. R., Somerville S. C. (2004). Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J. 40, 968–978. doi:  10.1111/j.1365-313X.2004.02264.x, PMID: PubMed DOI

Voxeur A., Habrylo O., Guénin S., Miart F., Soulié M.-C., Rihouey C., et al. (2019). Oligogalacturonide production upon Arabidopsis thaliana-Botrytis cinerea interaction. Proc. Natl. Acad. Sci. U.S.A. 116, 19743–19752. doi:  10.1073/pnas.1900317116, PMID: PubMed DOI PMC

Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., et al. (2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol. 213, 1052–1067. doi:  10.1111/nph.14267, PMID: PubMed DOI

Walter W., Sánchez-Cabo F., Ricote M. (2015). GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 31, 2912–2914. doi:  10.1093/bioinformatics/btv300, PMID: PubMed DOI

Wang J., Ding Y., Wang J., Hillmer S., Miao Y., Lo S. W., et al. (2010). EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell. 22, 4009–4030. doi:  10.1105/tpc.110.080697, PMID: PubMed DOI PMC

Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D. (2020). The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 227 (2), 529–544. doi:  10.1111/nph.16515, PMID: PubMed DOI

Westman S. M., Kloth K. J., Hanson J., Ohlsson A. B., Albrectsen B. R. (2019). Defence priming in arabidopsis - a meta-analysis. Sci. Rep. 9, 13309. doi:  10.1038/s41598-019-49811-9, PMID: PubMed DOI PMC

Wolf S., Hématy K., Höfte H. (2012). Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63, 381–407. doi:  10.1146/annurev-arplant-042811-105449, PMID: PubMed DOI

Wolf S., Mouille G., Pelloux J. (2009). Homogalacturonan methyl-esterification and plant development. Mol. Plant. 2, 851–860. doi:  10.1093/mp/ssp066, PMID: PubMed DOI

Zhang G. F., Staehelin L. A. (1992). Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol. 99, 1070–1083. doi:  10.1104/pp.99.3.1070, PMID: PubMed DOI PMC

Zhao T., Rui L., Li J., Nishimura M. T., Vogel J. P., Liu N., et al. (2015). A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PloS Genet. 11, e1004945. doi:  10.1371/journal.pgen.1004945, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...