An exocyst complex functions in plant cell growth in Arabidopsis and tobacco
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
18492870
PubMed Central
PMC2438459
DOI
10.1105/tpc.108.059105
PII: tpc.108.059105
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- chromatografie iontoměničová MeSH
- chromatografie kapalinová MeSH
- exocytóza genetika fyziologie MeSH
- fluorescenční protilátková technika nepřímá MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- hypokotyl genetika růst a vývoj metabolismus MeSH
- proteiny huseníčku genetika metabolismus fyziologie MeSH
- pyl genetika růst a vývoj metabolismus MeSH
- pylová láčka genetika růst a vývoj metabolismus MeSH
- rostlinné proteiny genetika metabolismus fyziologie MeSH
- semenáček genetika růst a vývoj metabolismus MeSH
- tabák genetika růst a vývoj metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- techniky dvojhybridového systému MeSH
- vazba proteinů MeSH
- vezikulární transportní proteiny genetika metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- EXO70A1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- rostlinné proteiny MeSH
- SEC8 protein, Arabidopsis MeSH Prohlížeč
- vezikulární transportní proteiny MeSH
The exocyst, an octameric tethering complex and effector of Rho and Rab GTPases, facilitates polarized secretion in yeast and animals. Recent evidence implicates three plant homologs of exocyst subunits (SEC3, SEC8, and EXO70A1) in plant cell morphogenesis. Here, we provide genetic, cell biological, and biochemical evidence that these and other predicted subunits function together in vivo in Arabidopsis thaliana. Double mutants in exocyst subunits (sec5 exo70A1 and sec8 exo70A1) show a synergistic defect in etiolated hypocotyl elongation. Mutants in exocyst subunits SEC5, SEC6, SEC8, and SEC15a show defective pollen germination and pollen tube growth phenotypes. Using antibodies directed against SEC6, SEC8, and EXO70A1, we demonstrate colocalization of these proteins at the apex of growing tobacco pollen tubes. The SEC3, SEC5, SEC6, SEC8, SEC10, SEC15a, and EXO70 subunits copurify in a high molecular mass fraction of 900 kD after chromatographic fractionation of an Arabidopsis cell suspension extract. Blue native electrophoresis confirmed the presence of SEC3, SEC6, SEC8, and EXO70 in high molecular mass complexes. Finally, use of the yeast two-hybrid system revealed interaction of Arabidopsis SEC3a with EXO70A1, SEC10 with SEC15b, and SEC6 with SEC8. We conclude that the exocyst functions as a complex in plant cells, where it plays important roles in morphogenesis.
Zobrazit více v PubMed
Adamo, J.E., Rossi, G., and Brennwald, P. (1999). The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10 4121–4133. PubMed PMC
Alonso, J.M., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653–657. PubMed
Andrews, H.K., Zhang, Y.Q., Trotta, N., and Broadie, K. (2002). Drosophila Sec10 is required for hormone secretion but not general exocytosis or neurotransmission. Traffic 12 906–921. PubMed
Berghöfer, J., and Klösgen, R.B. (1999). Two distinct translocation intermediates can be distinguished during protein transport by the TAT (Deltaph) pathway across the thylakoid membrane. FEBS Lett. 460 328–332. PubMed
Bowser, R., Muller, H., Govindan, B., and Novick, P. (1992). Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J. Cell Biol. 5 1041–1056. PubMed PMC
Bowser, R., and Novick, P. (1991). Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle. J. Cell Biol. 6 1117–1131. PubMed PMC
Brymora, A., Valova, V.A., Larsen, M.R., Roufogalis, B.D., and Robinson, P.J. (2001). The brain exocyst complex interacts with RalA in a GFP-dependent manner: Identification of a novel mammalian Sec3 gene and a second Sec15 gene. J. Biol. Chem. 276 29792–29797. PubMed
Cai, H., Reinisch, K., and Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12 671–682. PubMed
Cole, R.A., and Fowler, J.E. (2006). Polarized growth: Maintaining focus on the tip. Curr. Opin. Plant Biol. 9 579–588. PubMed
Cole, R.A., Synek, L., Zarsky, V., and Fowler, J.E. (2005). SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 138 2005–2018. PubMed PMC
Cvrckova, F., Elias, M., Hala, M., Obermeyer, G., and Zarsky, V. (2001). Small GTPases and conserved signalling pathways in plant cell morphogenesis: From exocytosis to Exocyst. In Cell Biology of Plant and Fungal Tip Growth, A. Geitmann and M. Cresti, eds (Amsterdam: IOS Press), pp. 105–122.
Dong, G., Hutagalung, A.H., Fu, C., Novick, P., and Reinisch, K.M. (2005). The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12 1094–1100. PubMed
EauClaire, S., and Guo, W. (2003). Conservation and specialization: The role of the exocyst in neuronal exocytosis. Neuron 3 369–370. PubMed
Elias, M., Drdova, E., Ziak, D., Bavlnka, B., Hala, M., Cvrckova, F., Soukupova, H., and Zarsky, V. (2003). The exocyst complex in plants. Cell Biol. Int. 27 199–201. PubMed
Eubel, H., Braun, H.P., and Millar, A.H. (2005). Blue-native PAGE in plants: A tool in analysis of protein-protein interactions. Plant Methods. 1 11. PubMed PMC
Finger, F.P., and Novick, P. (1997). Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 8 647–662. PubMed PMC
Friedrich, G.A., Hildebrand, J.D., and Soriano, P. (1997). The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 2 364–374. PubMed
Garrick, M.D., and Garrick, L.M. (2007). Loss of rapid transferrin receptor recycling due to a mutation in Sec15/1 in hbd mice. Biochim. Biophys. Acta 1773 105–108. PubMed
Guo, W., Grant, A., and Novick, P. (1999. a). Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 33 23558–23564. PubMed
Guo, W., Roth, D., Walch-Solimena, C., and Novick, P. (1999. b). The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 4 71–80. PubMed PMC
Guo, W., Tamanoi, F., and Novick, P. (2001). Spatial regulation of the exocyst complex by Rho1 GTPase. Nat. Cell Biol. 3 353–360. PubMed
Hamburger, Z.A., Hamburger, A.E., West, A.P., and Weis, W.I. (2006). Crystal structure of the S. cerevisiae exocyst component Exo70p. J. Mol. Biol. 356 9–21. PubMed
Hazuka, C.D., Foletti, D.L., Hsu, S.C., Kee, Y., Hopf, F.W., and Scheller, R.H. (1999). The sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci. 4 324–334. PubMed PMC
Hsu, S.C., Hazuka, C.D., Foletti, D.L., Heuser, J., and Scheller, R.H. (1998). Subunit composition, protein interactions and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20 1111–1122. PubMed
Hsu, S.C., TerBush, D., Abraham, M., and Guo, W. (2004). The exocyst complex in polarized exocytosis. Int. Rev. Cytol. 233 243–265. PubMed
Hsu, S.C., Ting, A.E., Hazuka, C.D., Davanger, S., Kenny, J.W., Kee, Y., and Scheller, R.H. (1996). The mammalian brain rsec6/8 complex. Neuron 6 209–219. PubMed
Jafar-Nejad, H., Andrews, H.K., Acar, M., Bayat, V., Wirtz-Peitz, F., Mehta, S.Q., Knoblich, J.A., and Bellen, H.J. (2005). Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell 9 351–363. PubMed
Johnson-Brousseau, S., and McCormick, S. (2004). A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically expressed genes. Plant J. 39 761–775. PubMed
Jurgens, G., and Geldner, N. (2002). Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3 605–613. PubMed
Kee, Y., Yoo, J.S., Hazuka, C.D., Peterson, K.E., Hsu, S.C., and Scheller, R.H. (1997). Subunit structure of the mammalian exocyst complex. Proc. Natl. Acad. Sci. USA 94 14438–14443. PubMed PMC
Koumandou, V.L., Dacks, J.B., Coulson, R.M., and Field, M.C. (2007). Control systems for membrane fusion in the ancestral eukaryote: Evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7 29. PubMed PMC
Lavy, M., Bloch, D., Hazak, O., Gutman, I., Poraty, L., Sorek, N., Sternberg, H., and Yalovsky, S.A. (2007). Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr. Biol. 17 947–952. PubMed
Li, C.R., Lee, R.T., Wang, Y.M., Zheng, X.D., and Wang, Y. (2007). Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J. Cell Sci. 120 1898–1907. PubMed
Lim, J.E., Jin, O., Bennett, C., Morgan, K., Wang, F., Trenor III, C.C., Fleming, M.D., and Andrews, N.C. (2005). A mutation in Sec15/1 causes anemia in hemoglobin deficit (hbd) mice. Nat. Genet. 37 1270–1273. PubMed
Matern, H.T., Yeaman, C., Nelson, W.J., and Scheller, R.H. (2001). The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Proc. Natl. Acad. Sci. USA 98 9648–9653. PubMed PMC
Moore, B.A., Robinson, H.H., and Xu, Z. (2007). The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J. Mol. Biol. 371 410–421. PubMed PMC
Moskalenko, S., Henry, D.O., Rosse, C., Mirey, G., Camonis, J.H., and White, M.A. (2002). The exocyst is a Ral effector complex. Nat. Cell Biol. 4 66–72. PubMed
Moskalenko, S., Tong, C., Rosse, C., Mirey, G., Formstecher, E., Daviet, L., Camonis, J., and White, M.A. (2003). Ral GTPases regulate exocyst assembly through dual subunit interactions. J. Biol. Chem. 278 51743–51748. PubMed
Munson, M., and Novick, P. (2006). The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13 577–581. PubMed
Murthy, M., Garza, D., Scheller, R.H., and Schwarz, T.L. (2003). Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37 433–447. PubMed
Novick, P., Field, C., and Schekman, R. (1980). Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21 205–215. PubMed
Otegui, M.S., and Staehelin, L.A. (2004). Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218 501–515. PubMed
Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20 3551–3567. PubMed
Pommereit, D., and Wouters, F.S. (2007). An NGF-induced Exo70-TC10 complex locally antagonises Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. J. Cell Sci. 120 2694–2705. PubMed
Preuss, D., Rhee, S.Y., and Davis, R.W. (1994). Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264 1458–1460. PubMed
Prigent, M., Dubois, T., Raposo, G., Derrien, V., Tenza, D., Rossé, C., Camonis, J., and Chavrier, P. (2003). ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163 1111–1121. PubMed PMC
Robinson, N.G., Guo, L., Imai, J., Toh-E, A., Matsui, Y., and Takanou, F. (1999). Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol. 19 3580–3587. PubMed PMC
Rosse, C., Hatzoglou, A., Parrini, M.C., White, M.A., Chavrier, P., and Camonis, J. (2006). RalB mobilizes the exocyst to drive cell migration. Mol. Cell. Biol. 26 727–734. PubMed PMC
Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., and Weisshaar, B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol. 53 247–259. PubMed
Roth, D., Guo, W., and Novick, P. (1998). Dominant-negative alleles of SEC10 reveal distinct domains involved in secretion and morphogenesis in yeast. Mol. Biol. Cell 7 725–739. PubMed PMC
Schägger, H., and von Jagow, G. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199 223–231. PubMed
Segui-Simarro, J.M., Austin II, J.R., White, E.A., and Staehelin, L.A. (2004). Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16 836–856. PubMed PMC
Sivaram, M.V., Furgason, M.L., Brewer, D.N., and Munson, M. (2006). The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat. Struct. Mol. Biol. 13 555–556. PubMed
Sivaram, M.V., Saporita, J.A., Furgason, M.L., Boettcher, A.J., and Munson, M. (2005). Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44 6302–6311. PubMed
Synek, L., Schlager, N., Elias, M., Quentin, M., Hauser, M.T., and Zarsky, V. (2006). At EXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48 54–72. PubMed PMC
Sztul, E., and Lupashin, V. (2006). Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell Physiol. 290 C11–C26. PubMed
Terbush, D.R., Guo, W., Dunkelbarger, S., and Novick, P. (2001). Purification and characterization of yeast exocyst complex. Methods Enzymol. 329 100–110. PubMed
TerBush, D.R., Maurice, T., Roth, D., and Novick, P. (1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15 6483–6494. PubMed PMC
TerBush, D.R., and Novick, P. (1995). Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130 299–312. PubMed PMC
Vega, I.E., and Hsu, S.C. (2001). The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21 3839–3848. PubMed PMC
Wen, T.J., Hochholdinger, F., Sauer, M., Bruce, W., and Schnable, P.S. (2005). The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol. 138 1637–1643. PubMed PMC
Wen, T.J., and Schnable, P.S. (1994). Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81 833–842.
Werhahn, W., and Braun, H.P. (2002). Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23 640–646. PubMed
Whyte, J.R., and Munro, S. (2001). The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1 527–537. PubMed
Whyte, J.R., and Munro, S. (2002). Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115 2627–2637. PubMed
Wu, S., Mehta, S.Q., Pichaud, F., Bellen, H.J., and Quiocho, F.A. (2005). Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12 879–885. PubMed
Yang, Z. (2002). Small GTPases: Versatile signaling switches in plants. Plant Cell 14 S375–S388. PubMed PMC
Yeaman, C. (2003). Ultracentrifugation-based approaches to study regulation of Sec6/8 (exocyst) complex function during development of epithelial cell polarity. Methods 30 198–206. PubMed
Yeaman, C., Grindstaff, K.K., and Nelson, W.J. (2004). Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117 559–570. PubMed PMC
Zhang, X., Bi, E., Novick, P., Du, L., Kozminski, K.G., Lipschutz, J.H., and Guo, W. (2001). Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276 46745–46750. PubMed
Zhang, X.M., Ellis, S., Sriratana, A., Mitchell, C.A., and Rowe, T. (2004). Sec15 is an effector for the Rab11 GTPase in mammalian cells. J. Biol. Chem. 279 43027–43034. PubMed
Zuo, X., Zhang, J., Zhang, Y., Hsu, S.C., Zhou, D., and Guo, W. (2006). Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat. Cell Biol. 8 1383–1388. PubMed
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
Functional Specialization within the EXO70 Gene Family in Arabidopsis
EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development
Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2
Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function
Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae
RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane
EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen
Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein
Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth
Tethering Complexes in the Arabidopsis Endomembrane System
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus
The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells
Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life
Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana