Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus

. 2014 ; 9 (4) : e94077. [epub] 20140411

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24728280

Repetitive sequences present a challenge for genome sequence assembly, and highly similar segmental duplications may disappear from assembled genome sequences. Having found a surprising lack of observable phenotypic deviations and non-Mendelian segregation in Arabidopsis thaliana mutants in SEC10, a gene encoding a core subunit of the exocyst tethering complex, we examined whether this could be explained by a hidden gene duplication. Re-sequencing and manual assembly of the Arabidopsis thaliana SEC10 (At5g12370) locus revealed that this locus, comprising a single gene in the reference genome assembly, indeed contains two paralogous genes in tandem, SEC10a and SEC10b, and that a sequence segment of 7 kb in length is missing from the reference genome sequence. Differences between the two paralogs are concentrated in non-coding regions, while the predicted protein sequences exhibit 99% identity, differing only by substitution of five amino acid residues and an indel of four residues. Both SEC10 genes are expressed, although varying transcript levels suggest differential regulation. Homozygous T-DNA insertion mutants in either paralog exhibit a wild-type phenotype, consistent with proposed extensive functional redundancy of the two genes. By these observations we demonstrate that recently duplicated genes may remain hidden even in well-characterized genomes, such as that of A. thaliana. Moreover, we show that the use of the existing A. thaliana reference genome sequence as a guide for sequence assembly of new Arabidopsis accessions or related species has at least in some cases led to error propagation.

Zobrazit více v PubMed

Ohno S (1970) Evolution by gene duplication. New York: Springer-Verlag. 160 p.

Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11: 97–108. PubMed

Rutter MT, Cross KV, van Woert PA (2012) Birth, death and subfunctionalization in the Arabidopsis genome. Trends Plant Sci 17: 204–212. PubMed

Wang Y, Wang X, Paterson AH (2012) Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci 1256: 1–14. PubMed

Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16: 1679–1691. PubMed PMC

De Smet R, Adams KL, Vandepoele K, van Montagu MC, Maere S, et al. (2013) Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci U S A 110: 2898–2903. PubMed PMC

Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60: 433–453. PubMed

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40: D1202–D1210. PubMed PMC

Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408: 796–815. PubMed

Salzberg SL, Yorke JA (2005) Beware of mis-assembled genomes. Bioinformatics 21: 4320–4321. PubMed

Ng PC, Kirkness EF (2010) Whole genome sequencing. Methods Mol Biol 628: 215–226. PubMed

Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11: 1005–1017. PubMed PMC

Cheung J, Estivill X, Khaja R, MacDonald JR, Lau K, et al. (2003) Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol 4: R25. PubMed PMC

She X, Jiang Z, Clark RA, Liu G, Cheng Z, et al. (2004) Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431: 927–30. PubMed

Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome sequence assembly. Nat Methods 8: 61–65. PubMed PMC

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, et al. (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12: 177–189. PubMed PMC

Huang X, Wang J, Aluru S, Yang SP, Hillier L (2003) PCAP: a whole-genome assembly program. Genome Res 13: 2164–2170. PubMed PMC

Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95: 315–327. PubMed PMC

Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, et al. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18: 2024–2033. PubMed PMC

Cvrčková F (2001) Small GTPases and conserved signalling pathways in plant cell morphogenesis: from exocytosis to Exocyst. In: Geitmann A and Cresti M, editors. Cell Biology of Plant and Fungal Tip Growth. Amsterdam: IOS Press. pp. 105–122.

Eliáš M, Drdová E, Ziak D, Bavlnka B, Hála M, et al. (2003) The exocyst complex in plants. Cell Biol Int 27: 199–201. PubMed

Synek L, Schlager N, Eliáš M, Quentin M, Hauser MT, et al. (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48: 54–72. PubMed PMC

Cvrčková F, Grunt M, Bezvoda R, Hála M, Kulich I, et al. (2012) Evolution of the land plant exocyst complexes. Front Plant Sci 3: 159–172. PubMed PMC

Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13: 898–907. PubMed PMC

Liu J, Guo W (2012) The exocyst complex in exocytosis and cell migration. Protoplasma 249: 587–597. PubMed

Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana . BMC Plant Biol 4: 10–30. PubMed PMC

Asamizu E, Nakamura Y, Sato S, Tabat S (2000) A large scale analysis of cDNA in Arabidopsis thaliana: generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries. DNA Res 7: 175–180. PubMed

Yamada K, Lim J, Dale JM, Chen H, Shinn P, et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842–846. PubMed

Hála M, Cole RA, Synek L, Drdová E, Pečenková T (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20: 1330–1345. PubMed PMC

Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296: 141–145. PubMed

Cole RA, Synek L, Žárský V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138: 2005–2018. PubMed PMC

Lehti-Shiu MD, Adamczyk BJ, Fernandez DE (2005) Expression of MADS-box genes during the embryonic phase in Arabidopsis . Plant Mol Biol 58: 89–107. PubMed

Wang YH (2008) How effective is T-DNA insertional mutagenesis in Arabidopsis? J Biochem Tech 1: 11–20.

Deng Y, Pan Y, Luo M (2013) Detection and correction of assembly errors of rice Nipponbare reference sequence. Plant Biol, in press. doi: 10.1111/plb.12090 PubMed

Bailey JA, Church DM, Ventura M, Rocchi M, Eichler EE (2004) Analysis of segmental duplications and genome assembly in the mouse. Genome Res 14: 789–801. PubMed PMC

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. (2002) Recent segmental duplications in the human genome. Science 297: 1003–1007. PubMed

Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: 956–963. PubMed

Weigel D, Mott R (2009) The 1001 Genomes project for Arabidopsis thaliana . Genome Biol 10: 107. PubMed PMC

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, et al. (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods 10: 563–569. PubMed

Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621–2632. PubMed PMC

Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM (2005) The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 12: 1094–1100. PubMed

Hamburger ZA, Hamburger AE, West AP, Weis WI (2006) Crystal structure of the S. cerevisiae exocyst component Exo70p. J Mol Biol 356: 9–21. PubMed

Sivaram MV, Furgason ML, Brewer DN, Munson M (2006) The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol 13: 555–556. PubMed

Roth D, Guo W, Novick P (1998) Dominant negative alleles of SEC10 reveal distinct domains involved in secretion and morphogenesis in yeast. Mol Biol Cell 9: 1725–1739. PubMed PMC

Zuo X, Guo W, Lipschutz JH (2009) The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 20: 2522–2529. PubMed PMC

Fogelgren B, Lin SY, Zuo X, Jaffe KM, Park KM, et al. (2011) The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes. PLoS Genet 7: e1001361. PubMed PMC

Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424: 194–197. PubMed

Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, et al. (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421: 63–66. PubMed

Nasmyth K, Dirick L, Surana U, Amon A, Cvrčková F (1991) Some facts and thoughts on cell cycle control in yeast. Cold Spring Harb Symp Quant Biol 56: 9–20. PubMed

Hanada K, Kuromori T, Myouga F, Toyoda T, Li WH, et al. (2009) Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis . Genome Biol Evol 1: 409–414. PubMed PMC

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana . Science 301: 653–657. PubMed

Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, et al. (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53: 247–259. PubMed

Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19: 1349. PubMed PMC

Schuler GD, Altschul SF, Lipman DJ (1991) A workbench for multiple alignment construction analysis. Proteins 9: 180–190. PubMed

Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, et al. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262: 208–214. PubMed

Seki M, Carninci P, Nishiyama Y, Hayashizaki Y, Shinozaki K (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J 15: 707–720. PubMed

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace