EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development

. 2020 Dec ; 184 (4) : 1823-1839. [epub] 20201013

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33051268

Pollen development, pollen grain germination, and pollen tube elongation are crucial biological processes in angiosperm plants that need precise regulation to deliver sperm cells to ovules for fertilization. Highly polarized secretion at a growing pollen tube tip requires the exocyst tethering complex responsible for specific targeting of secretory vesicles to the plasma membrane. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) EXO70A2 (At5g52340) is the main exocyst EXO70 isoform in the male gametophyte, governing the conventional secretory function of the exocyst, analogous to EXO70A1 (At5g03540) in the sporophyte. Our analysis of a CRISPR-generated exo70a2 mutant revealed that EXO70A2 is essential for efficient pollen maturation, pollen grain germination, and pollen tube growth. GFP:EXO70A2 was localized to the nucleus and cytoplasm in developing pollen grains and later to the apical domain in growing pollen tube tips characterized by intensive exocytosis. Moreover, EXO70A2 could substitute for EXO70A1 function in the sporophyte, but not vice versa, indicating partial functional redundancy of these two closely related isoforms and higher specificity of EXO70A2 for pollen development-related processes. Phylogenetic analysis revealed that the ancient duplication of EXO70A, one of which is always highly expressed in pollen, occurred independently in monocots and dicots. In summary, EXO70A2 is a crucial component of the exocyst complex in Arabidopsis pollen that is required for efficient plant sexual reproduction.

Zobrazit více v PubMed

Abrams ZB, Johnson TS, Huang K, Payne PRO, Coombes K(2019) A protocol to evaluate RNA sequencing normalization methods. BMC Bioinformatics 20(Suppl 24): 679. PubMed PMC

Alexander MP.(1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44: 117–122 PubMed

Backues SK, Korasick DA, Heese A, Bednarek SY(2010) The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. Plant Cell 22: 3218–3231 PubMed PMC

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. (2013) NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res 41: D991–D995 PubMed PMC

Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA(2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133: 713–725 PubMed PMC

Beuder S, Dorchak A, Bhide A, Moeller SR, Petersen BL, MacAlister CA(2020) Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O-arabinosyltransferase mutants. Plant J 103: 1399–1419 PubMed PMC

Bloch D, Pleskot R, Pejchar P, Potocký M, Trpkošová P, Cwiklik L, Vukašinović N, Sternberg H, Yalovsky S, Žárský V(2016) Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol 172: 980–1002 PubMed PMC

Boyd C, Hughes T, Pypaert M, Novick P(2004) Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol 167: 889–901 PubMed PMC

Cai G, Parrotta L, Cresti M(2015) Organelle trafficking, the cytoskeleton, and pollen tube growth. J Integr Plant Biol 57: 63–78 PubMed

Cankar K, Kortstee A, Toonen MA, Wolters-Arts M, Houbein R, Mariani C, Ulvskov P, Jorgensen B, Schols HA, Visser RG, et al. (2014) Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development. Plant Biotechnol J 12: 492–502 PubMed

Chebli Y, Kaneda M, Zerzour R, Geitmann A(2012) The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160: 1940–1955 PubMed PMC

Chebli Y, Kroeger J, Geitmann A(2013) Transport logistics in pollen tubes. Mol Plant 6: 1037–1052 PubMed

Clough SJ, Bent AF(1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743 PubMed

Cole RA, Synek L, Zarsky V, Fowler JE(2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138: 2005–2018 PubMed PMC

Conze LL, Berlin S, Le Bail A, Kost B(2017) Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genomics 18: 581. PubMed PMC

Cvrčková F, Eliáš M, Hála M, Obermeyer G, Žárský V(2001) Small GTPases and conserved signalling pathways in plant cell morphogenesis: From exocytosis to Exocyst In Geitmann A, and Cresti M, eds, Cell Biology of Plant and Fungal Tip Growth. IOS Press, Amsterdam, pp 123–136

Cvrčková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, Zárský V(2012) Evolution of the land plant exocyst complexes. Front Plant Sci 3: 159. PubMed PMC

Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu S-H, Jiang N, Robin Buell C(2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J 71: 492–502 PubMed

De Smet R, Sabaghian E, Li Z, Saeys Y, Van de Peer Y(2017) Coordinated functional divergence of genes after genome duplication in Arabidopsis thaliana. Plant Cell 29: 2786–2800 PubMed PMC

Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM(2005) The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 12: 1094–1100 PubMed

Drdová EJ, Synek L, Pečenková T, Hála M, Kulich I, Fowler JE, Murphy AS, Zárský V(2013) The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J 73: 709–719 PubMed

Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V(2003) The exocyst complex in plants. Cell Biol Int 27: 199–201 PubMed

Fendrych M, Synek L, Pecenková T, Drdová EJ, Sekeres J, de Rycke R, Nowack MK, Zársky V(2013) Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell 24: 510–520 PubMed PMC

Fendrych M, Synek L, Pecenková T, Toupalová H, Cole R, Drdová E, Nebesárová J, Sedinová M, Hála M, Fowler JE, et al. (2010) The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22: 3053–3065 PubMed PMC

Ghosh S, Chan C-K (2016) Analysis of RNA-seq data using TopHat and Cufflinks. In Edwards D, ed, Plant Bioinformatics: Methods and Protocols, Methods in Molecular Biology, Vol 1374 Humana Press, New York, pp 339–361 PubMed

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. (2012) Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res 40: D1178–D1186 PubMed PMC

Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U(2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19: 1786–1800 PubMed PMC

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O(2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 59: 307–321 PubMed

Guo W, Grant A, Novick P(1999) Exo84p is an exocyst protein essential for secretion. J Biol Chem 274: 23558–23564 PubMed

Hála M, Cole R, Synek L, Drdová E, Pecenková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, et al. (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20: 1330–1345 PubMed PMC

Hamburger ZA, Hamburger AE, West AP Jr., Weis WI(2006) Crystal structure of the S. cerevisiae exocyst component Exo70p. J Mol Biol 356: 9–21 PubMed

He B, Xi F, Zhang X, Zhang J, Guo W(2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26: 4053–4065 PubMed PMC

Hepler PK, Winship LJ(2015) The pollen tube clear zone: Clues to the mechanism of polarized growth. J Integr Plant Biol 57: 79–92 PubMed

Hollender C-A, Kang C, Darwish O, Geretz A, Matthews B-F, Slovin J, Alkharouf N, Liu Z(2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165: 1062–1075 PubMed PMC

Hong D, Jeon BW, Kim SY, Hwang J-U, Lee Y(2016) The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. New Phytol 209: 624–635 PubMed

Honys D, Twell D(2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132: 640–652 PubMed PMC

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P(2008) Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008: 420747 PubMed PMC

Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z(2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18: 1907–1916 PubMed PMC

Janková Drdová E, Klejchová M, Janko K, Hála M, Soukupová H, Cvrčková F, Žárský V(2019) Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function. J Exp Bot 70: 1255–1265 PubMed PMC

Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang X-Q, Yang W-C, Sundaresan V, Ye D(2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584–596 PubMed PMC

Johnson MA, Preuss D(2002) Plotting a course: Multiple signals guide pollen tubes to their targets. Dev Cell 2: 273–281 PubMed

Kang B-H, Rancour DM, Bednarek SY(2003) The dynamin-like protein ADL1C is essential for plasma membrane maintenance during pollen maturation. Plant J 35: 1–15 PubMed

Karimi M, Bleys A, Vanderhaeghen R, Hilson P(2007) Building blocks for plant gene assembly. Plant Physiol 145: 1183–1191 PubMed PMC

Katoh K, Standley DM(2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30: 772–780 PubMed PMC

Kaya H, Iwano M, Takeda S, Kanaoka MM, Kimura S, Abe M, Kuchitsu K(2015) Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signal Behav 10: e989050. PubMed PMC

Kubátová Z, Pejchar P, Potocký M, Sekereš J, Žárský V, Kulich I(2019) Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. Int J Mol Sci 20: 3803 PubMed PMC

Kulich I, Cole R, Drdová E, Cvrcková F, Soukup A, Fowler J, Zárský V(2010) Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol 188: 615–625 PubMed

Kulich I, Pečenková T, Sekereš J, Smetana O, Fendrych M, Foissner I, Höftberger M, Zárský V(2013) Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14: 1155–1165 PubMed

Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V(2015) Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol 168: 120–131 PubMed PMC

Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T(2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78: 94–106 PubMed

Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S(2007) A Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17: 947–952 PubMed

Leroux C, Bouton S, Kiefer-Meyer M-C, Fabrice TN, Mareck A, Guénin S, Fournet F, Ringli C, Pelloux J, Driouich A, et al. (2015) PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. Plant Physiol 167: 367–380 PubMed PMC

Li S, Gu Y, Yan A, Lord E, Yang ZB(2008) RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol Plant 1: 1021–1035 PubMed PMC

Loraine AE, McCormick S, Estrada A, Patel K, Qin P(2013) RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162: 1092–1109 PubMed PMC

MacAlister CA, Ortiz-Ramírez C, Becker JD, Feijó JA, Lippman ZB(2016) Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens. Plant J 85: 193–208 PubMed PMC

Matern HT, Yeaman C, Nelson WJ, Scheller RH(2001) The Sec6/8 complex in mammalian cells: Characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Proc Natl Acad Sci USA 98: 9648–9653 PubMed PMC

Mei K, Li Y, Wang S, Shao G, Wang J, Ding Y, Luo G, Yue P, Liu JJ, Wang X, et al. (2018) Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol 25: 139–146 PubMed PMC

Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T(2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8: 64–71 PubMed

Paul P, Röth S, Schleiff E(2016) Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. Plant Reprod 29: 53–65 PubMed

Pečenková T, Hála M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Zárský V(2011) The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot 62: 2107–2116 PubMed PMC

Pečenková T, Markovic V, Sabol P, Kulich I, Žárský V(2017) Exocyst and autophagy-related membrane trafficking in plants. J Exp Bot 69: 47–57 PubMed

Peng J, Ilarslan H, Wurtele ES, Bassham DC(2011) AtRabD2b and AtRabD2c have overlapping functions in pollen development and pollen tube growth. BMC Plant Biol 11: 25. PubMed PMC

Pleskot R, Cwiklik L, Jungwirth P, Žárský V, Potocký M(2015) Membrane targeting of the yeast exocyst complex. Biochim Biophys Acta 1848: 1481–1489 PubMed

Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V(2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174: 742–751 PubMed

Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A, Alché J de D, Kost B, Žárský V(2012) NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. J Plant Physiol 169: 1654–1663 PubMed

Proost S, Mutwil M(2018) CoNekT: An open-source framework for comparative genomic and transcriptomic network analyses. Nucleic Acids Res 46(W1): W133–W140 PubMed PMC

Qin Y, Dong J(2015) Focusing on the focus: What else beyond the master switches for polar cell growth? Mol Plant 8: 582–594 PubMed PMC

Rawat A, Brejšková L, Hála M, Cvrčková F, Žárský V(2017) The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytol 216: 438–454 PubMed

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP(2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542 PubMed PMC

Rossetti S, Bonatti PM(2001) In situ histochemical monitoring of ozone- and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiol Biochem 39: 433–442

Rybak K, Steiner A, Synek L, Klaeger S, Kulich I, Facher E, Wanner G, Kuster B, Zarsky V, Persson S, et al. (2014) Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and exocyst tethering complexes. Dev Cell 29: 607–620 PubMed

Sabol P, Kulich I, Žárský V(2017) RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. J Exp Bot 68: 3253–3265 PubMed PMC

Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V, Potocký M(2017) Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol 173: 1659–1675 PubMed PMC

Smirnova AV, Matveyeva NP, Yermakov IP(2014) Reactive oxygen species are involved in regulation of pollen wall cytomechanics. Plant Biol 16: 252–257 PubMed

Synek L, Schlager N, Eliás M, Quentin M, Hauser M-T, Zárský V(2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48: 54–72 PubMed PMC

Synek L, Vukašinović N, Kulich I, Hála M, Aldorfová K, Fendrych M, Žárský V(2017) EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol 174: 223–240 PubMed PMC

TerBush DR, Maurice T, Roth D, Novick P(1996) The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15: 6483–6494 PubMed PMC

Tian G-W, Chen M-H, Zaltsman A, Citovsky V(2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294: 83–91 PubMed

Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S(2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27: 153–167 PubMed

Vukašinović N, Cvrčková F, Eliáš M, Cole R, Fowler JE, Žárský V, Synek L(2014) Dissecting a hidden gene duplication: The Arabidopsis thaliana SEC10 locus. PLoS One 9: e94077. PubMed PMC

Vukašinović N, Oda Y, Pejchar P, Synek L, Pečenková T, Rawat A, Sekereš J, Potocký M, Žárský V(2017) Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol 213: 1052–1067 PubMed

Wang X, Wang K, Yin G, Liu X, Liu M, Cao N, Duan Y, Gao H, Wang W, Ge W, et al. (2018) Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiol 176: 1993–2006 PubMed PMC

Wang Z-P, Xing H-L, Dong L, Zhang H-Y, Han C-Y, Wang X-C, Chen Q-J(2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16: 144. PubMed PMC

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ(2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191 PubMed PMC

Žárský V, Kulich I, Fendrych M, Pečenková T(2013) Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol 16: 726–733 PubMed

Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F(2020) Three subfamilies of exocyst EXO70 family subunits in land plants: Early divergence and ongoing functional specialization. J Exp Bot 71: 49–62 PubMed

Zhang C, Brown MQ, van de Ven W, Zhang ZM, Wu B, Young MC, Synek L, Borchardt D, Harrison R, Pan S, et al. (2016) Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci USA 113: E41–E50 PubMed PMC

Zhang X, Pumplin N, Ivanov S, Harrison MJ(2015) EXO70I is required for development of a sub-domain of the periarbuscular membrane during arbuscular mycorrhizal symbiosis. Curr Biol 25: 2189–2195 PubMed

Zhao L-J, Yuan H-M, Guo W-D, Yang C-P(2016) Digital gene expression analysis of Populus simonii × P. nigra pollen germination and tube growth. Front Plant Sci 7: 825. PubMed PMC

Zhou H, Yin H, Chen J, Liu X, Gao Y, Wu J, Zhang S(2016) Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expr Patterns 20: 11–21 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...