Membrane targeting of the yeast exocyst complex
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25838123
DOI
10.1016/j.bbamem.2015.03.026
PII: S0005-2736(15)00105-4
Knihovny.cz E-zdroje
- Klíčová slova
- Exo70p, Molecular dynamics simulation, Phosphatidylinositol (4,5)-bisphosphate, Rho1p, Sec3p, The exocyst complex,
- MeSH
- buněčná membrána chemie metabolismus MeSH
- exocytóza * MeSH
- fosfatidylinositol-4,5-difosfát chemie metabolismus MeSH
- kinetika MeSH
- mutace MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- rho proteiny vázající GTP chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekreční dráha MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- vezikulární transportní proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EXO70 protein, S cerevisiae MeSH Prohlížeč
- fosfatidylinositol-4,5-difosfát MeSH
- podjednotky proteinů MeSH
- rho proteiny vázající GTP MeSH
- RHO1 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- SEC3 protein, S cerevisiae MeSH Prohlížeč
- vezikulární transportní proteiny MeSH
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits - Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.
Citace poskytuje Crossref.org
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development
Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2
Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality
Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth
Tethering Complexes in the Arabidopsis Endomembrane System