Tethering Complexes in the Arabidopsis Endomembrane System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
27243010
PubMed Central
PMC4871884
DOI
10.3389/fcell.2016.00046
Knihovny.cz E-zdroje
- Klíčová slova
- COG, CORVET, Dsl1, Exocyst, GARP, HOPS, TRAPP, Tethering complexes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model-Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology.
Zobrazit více v PubMed
Aoki T., Ichimura S., Itoh A., Kuramoto M., Shinkawa T., Isobe T., et al. . (2009). Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport. Mol. Biol. Cell 20, 2639–2649. 10.1091/mbc.E08-11-1104 PubMed DOI PMC
Asaoka R., Uemura T., Ito J., Fujimoto M., Ito E., Ueda T., et al. . (2013). Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J. 73, 240–249. 10.1111/tpj.12023 PubMed DOI
Balderhaar H. J., Ungermann C. (2013). CORVET and HOPS tethering complexes–coordinators of endosome and lysosome fusion. J. Cell Sci. 126, 1307–1316. 10.1242/jcs.107805 PubMed DOI
Bodemann B. O., Orvedahl A., Cheng T., Ram R. R., Ou Y. H., Formstecher E., et al. . (2011). RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144, 253–267. 10.1016/j.cell.2010.12.018 PubMed DOI PMC
Boevink P., Oparka K., Cruz S. S., Martin B., Betteridge A., Hawes C. (1998). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441–447. 10.1046/j.1365-313X.1998.00208.x PubMed DOI
Bonifacino J. S., Hierro A. (2011). Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol. 21, 159–167. 10.1016/j.tcb.2010.11.003 PubMed DOI PMC
Boyd C., Hughes T., Pypaert M., Novick P. (2004). Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167, 889–901. 10.1083/jcb.200408124 PubMed DOI PMC
Bröcker C., Engelbrecht-Vandré S., Ungermann C. (2010). Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20, R943–R952. 10.1016/j.cub.2010.09.015 PubMed DOI
Cai H., Yu S., Menon S., Cai Y., Lazarova D., Fu C., et al. . (2007). TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944. 10.1038/nature05527 PubMed DOI
Cai Y., Chin H. F., Lazarova D., Menon S., Fu C., Cai H., et al. . (2008). The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133, 1202–1213. 10.1016/j.cell.2008.04.049 PubMed DOI PMC
Cole R. A., Synek L., Zarsky V., Fowler J. E. (2005). SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138, 2005–2018. 10.1104/pp.105.062273 PubMed DOI PMC
Conibear E., Cleck J. N., Stevens T. H. (2003). Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol. Biol. Cell 14, 1610–1623. 10.1091/mbc.E02-10-0654 PubMed DOI PMC
Conibear E., Stevens T. H. (2000). Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol. Biol. Cell 11, 305–323. 10.1091/mbc.11.1.305 PubMed DOI PMC
Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., et al. . (2012). Evolution of the land plant exocyst complexes. Front. Plant Sci. 3:159. 10.3389/fpls.2012.00159 PubMed DOI PMC
Ding Y., Wang J., Lai J. H. C., Chan V. H. L., Wang X., Cai Y., et al. . (2014). Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol. Biol. Cell 25, 412–426. 10.1091/mbc.E13-10-0586 PubMed DOI PMC
Drakakaki G., Van de Ven W., Pan S., Miao Y., Wang J., Keinath N. F., et al. . (2012). Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res. 22, 413–424. 10.1038/cr.2011.129 PubMed DOI PMC
Drdova E. J., Synek L., Pečenková T., Hala M., Kulich I., Fowler J. E., et al. . (2013). The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J. 73, 709–719. 10.1111/tpj.12074 PubMed DOI
Du Y., Mpina M. H., Birch P. R., Bouwmeester K., Govers F. (2015). Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiol. 169, 1975–1990. 10.1104/pp.15.01169 PubMed DOI PMC
Eliáš M. (2010). Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol. Membr. Biol. 27, 469–489. 10.3109/09687688.2010.521201 PubMed DOI
Eliáš M., Brighouse A., Gabernet-Castello C., Field M. C., Dacks J. B. (2012). Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125, 2500–2508. 10.1242/jcs.101378 PubMed DOI PMC
Eliáš M., Drdova E., Ziak D., Bavlnka B., Hala M., Cvrčková F., et al. . (2003). The exocyst complex in plants. Cell Biol. Int. 27, 199–201. 10.1016/S1065-6995(02)00349-9 PubMed DOI
Fendrych M., Synek L., Pečenková T., Drdová E. J., Sekereš J., De Rycke R., et al. . (2013). Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol. Biol. Cell. 24, 510–520. 10.1091/mbc.E12-06-0492 PubMed DOI PMC
Fendrych M., Synek L., Peèenková T., Toupalová H., Cole R., Drdová E., et al. . (2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22, 3053–3065. 10.1105/tpc.110.074351 PubMed DOI PMC
Fotso P., Koryakina Y., Pavliv O., Tsiomenko A. B., Lupashin V. V. (2005). Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem. 280, 27613–27623. 10.1074/jbc.M504597200 PubMed DOI
Fowler J. E. (2010). Evolution of the ROP GTPase signaling module, in Integrated G Proteins Signaling in Plants, eds Yalovsky S., Baluška F., Jones A. (Berlin; Heidelberg: Springer; ), 305–327. 10.1007/978-3-642-03524-1_15 DOI
Gavrin A., Kaiser B. N., Geiger D., Tyerman S. D., Wen Z., Bisseling T., et al. . (2014). Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. Plant Cell 26, 3809–3822. 10.1105/tpc.114.128736 PubMed DOI PMC
Grosshans B. L., Ortiz D., Novick P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. U.S.A. 103, 11821–11827. 10.1073/pnas.0601617103 PubMed DOI PMC
Guermonprez H., Smertenko A., Crosnier M. T., Durandet M., Vrielynck N., Guerche P., et al. . (2008). The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells. J. Exp. Bot. 59, 3087–3098. 10.1093/jxbern162 PubMed DOI
Guo W., Roth D., Walch−Solimena C., Novick P. (1999). The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080. 10.1093/emboj/18.4.1071 PubMed DOI PMC
Ha J. Y., Pokrovskaya I. D., Climer L. K., Shimamura G. R., Kudlyk T., Jeffrey P. D., et al. . (2014). Cog5–Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex. Proc. Natl. Acad. Sci. U.S.A. 111, 15762–15767. 10.1073/pnas.1414829111 PubMed DOI PMC
Hála M., Cole R., Synek L., Drdová E., Pečenková T., Nordheim A., et al. . (2008). An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20, 1330–1345. 10.1105/tpc.108.059105 PubMed DOI PMC
He B., Guo W. (2009). The exocyst complex in polarized exocytosis. Curr. Opin. Cell Biol. 21, 537–542. 10.1016/j.ceb.2009.04.007 PubMed DOI PMC
Heard W., Sklenáø J., Tomé D. F., Robatzek S., Jones A. M. (2015). Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell. Proteomics 14, 1796–1813. 10.1074/mcp.M115.050286 PubMed DOI PMC
Heider M. R., Gu M., Duffy C. M., Mirza A. M., Marcotte L. L., Walls A. C., et al. . (2016). Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23, 59–66. 10.1038/nsmb.3146 PubMed DOI PMC
Heider M. R., Munson M. (2012). Exorcising the exocyst complex. Traffic 13, 898–907. 10.1111/j.1600-0854.2012.01353.x PubMed DOI PMC
Hirose H., Arasaki K., Dohmae N., Takio K., Hatsuzawa K., Nagahama M., et al. . (2004). Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 23, 1267–1278. 10.1038/sj.emboj.7600135 PubMed DOI PMC
Hong D., Jeon B. W., Kim S. Y., Hwang J. U., Lee Y. (2016). The ROP2−RIC7 pathway negatively regulates light−induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. New Phytol. 209, 624–635. 10.1111/nph.13625 PubMed DOI
Hutagalung A. H., Novick P. J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149. 10.1152/physrev.00059.2009 PubMed DOI PMC
Ishikawa T., Machida C., Yoshioka Y., Ueda T., Nakano A., Machida Y. (2008). EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13, 521–535. 10.1111/j.1365-2443.2008.01186.x PubMed DOI
Ivanchenko M., Vejlupkova Z., Quatrano R. S., Fowler J. E. (2000). Maize ROP7 GTPase contains a unique, CaaX box−independent plasma membrane targeting signal. Plant J. 24, 79–90. 10.1046/j.1365-313x.2000.00855.x PubMed DOI
Jaber E., Thiele K., Kindzierski V., Loderer C., Rybak K., Jürgens G., et al. . (2010). A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. New Phytol. 187, 751–763. 10.1111/j.1469-8137.2010.03331.x PubMed DOI
Jones S., Newman C., Liu F., Segev N. (2000). The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol. Biol. Cell 11, 4403–4411. 10.1091/mbc.11.12.4403 PubMed DOI PMC
Klinger C. M., Klute M. J., Dacks J. B. (2013). Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in apicomplexa. PLoS ONE 8:e76278. 10.1371/journal.pone.0076278 PubMed DOI PMC
Koumandou V. L., Dacks J. B., Coulson R. M., Field M. C. (2007). Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7:29. 10.1186/1471-2148-7-29 PubMed DOI PMC
Kraynack B. A., Chan A., Rosenthal E., Essid M., Umansky B., Waters M. G., et al. . (2005). Dsl1p, Tip20p, and the novel Dsl3 (Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 16, 3963–3977. 10.1091/mbc.E05-01-0056 PubMed DOI PMC
Kulich I., Cole R., Drdová E., Cvrèková F., Soukup A., Fowler J. E., Žárský V. (2010). Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 188, 615–625. 10.1111/j.1469-8137.2010.03372.x PubMed DOI
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., et al. . (2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy−related transport to the vacuole. Traffic 14, 1155–1165. 10.1111/tra.12101 PubMed DOI
Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. (2015). Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 168, 120–131. 10.1104/pp.15.00112 PubMed DOI PMC
Latijnhouwers M., Hawes C., Carvalho C. (2005). Holding it all together? Candidate proteins for the plant Golgi matrix. Curr. Opin. Plant Biol. 8, 632–639. 10.1016/j.pbi.2005.09.014 PubMed DOI
Laufman O., Kedan A., Hong W., Lev S. (2009). Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J. 28, 2006–2017. 10.1038/emboj.2009.168 PubMed DOI PMC
Lavy M., Bloch D., Hazak O., Gutman I., Poraty L., Sorek N., et al. . (2007). A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr. Biol. 17, 947–952. 10.1016/j.cub.2007.04.038 PubMed DOI
Lavy M., Bracha-Drori K., Sternberg H., Yalovsky S. (2002). A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs. Plant Cell 14, 2431–2450. 10.1105/tpc.005561 PubMed DOI PMC
Lee C. F., Pu H. Y., Wang L. C., Sayler R. J., Yeh C. H., Wu S. J. (2006). Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224, 330–338. 10.1007/s00425-005-0216-6 PubMed DOI
Li L., Shimada T., Takahashi H., Koumoto Y., Shirakawa M., Takagi J., et al. . (2013). MAG2 and three MAG2−INTERACTING PROTEINs form an ER−localized complex to facilitate storage protein transport in Arabidopsis thaliana. Plant J. 76, 781–791. 10.1111/tpj.12347 PubMed DOI
Li L., Shimada T., Takahashi H., Ueda H., Fukao Y., Kondo M., et al. . (2006). MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell 18, 3535–3547. 10.1105/tpc.106.046151 PubMed DOI PMC
Li S., Chen M., Yu D., Ren S., Sun S., Liu L., et al. . (2013). EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell 25, 1774–1786. 10.1105/tpc.113.112144 PubMed DOI PMC
Lin Y., Ding Y., Wang J., Shen J., Kung C. H., Zhuang X., et al. . (2015). Exocyst-positive organelles and autophagosomes are distinct organelles in plants. Plant Physiol. 169, 1917–1932. 10.1104/pp.15.00953 PubMed DOI PMC
Lobstein E., Guyon A., Férault M., Twell D., Pelletier G., Bonhomme S. (2004). The putative Arabidopsis homolog of yeast vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol. 135, 1480–1490. 10.1104/pp.103.037747 PubMed DOI PMC
Lynch-Day M. A., Bhandari D., Menon S., Huang J., Cai H., Bartholomew C. R., et al. . (2010). Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc. Natl. Acad. Sci. U.S.A. 107, 7811–7816. 10.1073/pnas.1000063107 PubMed DOI PMC
Markgraf D. F., Peplowska K., Ungermann C. (2007). Rab cascades and tethering factors in the endomembrane system. FEBS Lett. 581, 2125–2130. 10.1016/j.febslet.2007.01.090 PubMed DOI
Martin-Urdiroz M., Deeks M. J., Horton C. G., Dawe H. R., Jourdain I. (2016). The exocyst complex in health and disease. Front. Cell Dev. Biol. 4:24. 10.3389/fcell.2016.00024 PubMed DOI PMC
Miller V. J., Sharma P., Kudlyk T. A., Frost L., Rofe A. P., Watson I. J., et al. . (2013). Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J. Biol. Chem. 288, 4229–4240. 10.1074/jbc.M112.426767 PubMed DOI PMC
Morozova N., Liang Y., Tokarev A. A., Chen S. H., Cox R., Andrejic J., et al. . (2006). TRAPPII subunits are required for the specificity switch of a Ypt–Rab GEF. Nat. Cell Biol. 8, 1263–1269. 10.1038/ncb1489 PubMed DOI
Naramoto S., Nodzyñski T., Dainobu T., Takatsuka H., Okada T., Friml J., et al. . (2014). VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. Plant Cell Physiol. 55, 750–763. 10.1093/pcp/pcu012 PubMed DOI
Nordmann M., Cabrera M., Perz A., Bröcker C., Ostrowicz C., Engelbrecht-Vandré S., et al. . (2010). The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20, 1654–1659. 10.1016/j.cub.2010.08.002 PubMed DOI
Oda Y., Iida Y., Nagashima Y., Sugiyama Y., Fukuda H. (2015). Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric golgi-complex 2 protein. Plant Cell Physiol. 56, 277–286. 10.1093/pcp/pcu197 PubMed DOI
Osterrieder A., Carvalho C. M., Latijnhouwers M., Johansen J. N., Stubbs C., Botchway S., et al. . (2009). Fluorescence lifetime imaging of interactions between Golgi tethering factors and small GTPases in plants. Traffic 10, 1034–1046. 10.1111/j.1600-0854.2009.00930.x PubMed DOI
Ostertag M., Stammler J., Douchkov D., Eichmann R., Hückelhoven R. (2013). The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Mol. Plant Path. 14, 230–240. 10.1111/j.1364-3703.2012.00846.x PubMed DOI PMC
Pahari S., Cormark R. D., Blackshaw M. T., Liu C., Erickson J. L., Schultz E. A. (2014). Arabidopsis UNHINGED encodes a VPS51 homolog and reveals a role for the GARP complex in leaf shape and vein patterning. Development 141, 1894–1905. 10.1242/dev.099333 PubMed DOI
Pečenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., et al. . (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. J. Exp. Bot. 62, 2107–2116. 10.1093/jxb/erq402 PubMed DOI PMC
Pečenková T., Sabol P., Kulich I., Ortmannova J., Žárský V. (2016). Constitutive negative regulation of R Proteins in Arabidopsis also via autophagy related pathway? Front. Plant Sci. 7:260. 10.3389/fpls.2016.00260 PubMed DOI PMC
Petrželková R., Eliáš M. (2014). Contrasting patterns in the evolution of the Rab GTPase family in Archaeplastida. Acta Soc. Bot. Pol. 83, 303–315. 10.5586/asbp.2014.052 DOI
Pleskot R., Cwiklik L., Jungwirth P., Žárský V., Potocký M. (2015). Membrane targeting of the yeast exocyst complex. Biochim. Biophys. Acta 7, 1481–1489. 10.1016/j.bbamem.2015.03.026 PubMed DOI
Pokrovskaya I. D., Willett R., Smith R. D., Morelle W., Kudlyk T., Lupashin V. V. (2011). Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554–1569. 10.1093/glycob/cwr028 PubMed DOI PMC
Qi X., Kaneda M., Chen J., Geitmann A., Zheng H. (2011). A specific role for Arabidopsis TRAPPII in post−Golgi trafficking that is crucial for cytokinesis and cell polarity. Plant J. 68, 234–248. 10.1111/j.1365-313X.2011.04681.x PubMed DOI
Qi X., Zheng H. (2011). Arabidopsis TRAPPII is functionally linked to Rab-A, but not Rab-D in polar protein trafficking in trans-Golgi network. Plant Signal. Behav. 6, 1679–1683. 10.4161/psb.6.11.17915 PubMed DOI PMC
Reggiori F., Wang C. W., Stromhaug P. E., Shintani T., Klionsky D. J. (2003). Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion. J. Biol. Chem. 278, 5009–5020. 10.1074/jbc.M210436200 PubMed DOI PMC
Ren Y., Yip C. K., Tripathi A., Huie D., Jeffrey P. D., Walz T., et al. . (2009). A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139, 1119–1129. 10.1016/j.cell.2009.11.002 PubMed DOI PMC
Rojo E., Gillmor C. S., Kovaleva V., Somerville C. R., Raikhel N. V. (2001). VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev. Cell 1, 303–310. 10.1016/S1534-5807(01)00024-7 PubMed DOI
Rojo E., Zouhar J., Kovaleva V., Hong S., Raikhel N. V. (2003). The AtC–VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis. Mol Biol Cell 14, 361–369. 10.1091/mbc.E02-08-0509 PubMed DOI PMC
Rutherford S., Moore I. (2002). The Arabidopsis Rab GTPase family: another enigma variation. Curr. Opin. Plant Biol. 5, 518–528. 10.1016/S1369-5266(02)00307-2 PubMed DOI
Rybak K., Steiner A., Synek L., Klaeger S., Kulich I., Facher E., et al. . (2014). Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and Exocyst tethering complexes. Dev. Cell 29, 607–620. 10.1016/j.devcel.2014.04.029 PubMed DOI
Sacher M., Kim Y. G., Lavie A., Oh B. H., Segev N. (2008). The TRAPP complex: insights into its architecture and function. Traffic 9, 2032–2042. 10.1111/j.1600-0854.2008.00833.x PubMed DOI PMC
Safavian D., Jamshed M., Sankaranarayanan S., Indriolo E., Samuel M. A., Goring D. R. (2014). High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reprod 27, 121–127. 10.1007/s00497-014-0245-z PubMed DOI
Safavian D., Zayed Y., Indriolo E., Chapman L., Ahmed A., Goring D. (2015). RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol. 169, 2526–2538. 10.1104/pp.15.00635 PubMed DOI PMC
Samuel M. A., Chong Y. T., Haasen K. E., Aldea-Brydges M. G., Stone S. L., Goring D. R. (2009). Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21, 2655–2671. 10.1105/tpc.109.069740 PubMed DOI PMC
Schindler C., Chen Y., Pu J., Guo X., Bonifacino J. S. (2015). EARP is a multisubunit tethering complex involved in endocytic recycling. Nat. Cell Biol. 17, 639–650. 10.1038/ncb3129 PubMed DOI PMC
Shen D., Yuan H., Hutagalung A., Verma A., Kümmel D., Wu X., et al. . (2013). The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202, 509–526. 10.1083/jcb.201211148 PubMed DOI PMC
Siniossoglou S., Pelham H. R. (2001). An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J. 20, 5991–5998. 10.1093/emboj/20.21.5991 PubMed DOI PMC
Söllner R., Glässer G., Wanner G., Somerville C. R., Jürgens G., Assaad F. F. (2002). Cytokinesis-defective mutants of Arabidopsis. Plant Physiol. 129, 678–690. 10.1104/pp.004184 PubMed DOI PMC
Sorek N., Gutman O., Bar E., Abu-Abied M., Feng X., Running M. P., et al. . (2011). Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. Plant Physiol. 155, 706–720. 10.1104/pp.110.166850 PubMed DOI PMC
Stegmann M., Anderson R. G., Ichimura K., Pecenkova T., Reuter P., Žárský V., et al. . (2012). The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell 24, 4703–4716. 10.1105/tpc.112.104463 PubMed DOI PMC
Synek L., Schlager N., Eliáš M., Quentin M., Hauser M. T., Žárský V. (2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48, 54–72. 10.1111/j.1365-313X.2006.02854.x PubMed DOI PMC
Tagaya M., Arasaki K., Inoue H., Kimura H. (2014). Moonlighting functions of the NRZ (mammalian Dsl1) complex. Front. Cell Dev. Biol. 2, 25. 10.3389/fcell.2014.00025 PubMed DOI PMC
Teh O. K., Moore I. (2007). An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448, 493–496. 10.1038/nature06023 PubMed DOI
Thellmann M., Rybak K., Thiele K., Wanner G., Assaad F. F. (2010). Tethering factors required for cytokinesis in Arabidopsis. Plant Physiol. 154, 720–732. 10.1104/pp.110.154286 PubMed DOI PMC
Ueda T., Yamaguchi M., Uchimiya H., Nakano A. (2001). Ara6, a plant−unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 20, 4730–4741. 10.1093/emboj/20.17.4730 PubMed DOI PMC
Ungar D., Oka T., Brittle E. E., Vasile E., Lupashin V. V., Chatterton J. E., et al. . (2002). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157, 405–415. 10.1083/jcb.200202016 PubMed DOI PMC
Ungar D., Oka T., Krieger M., Hughson F. M. (2006). Retrograde transport on the COG railway. Trends Cell Biol. 16, 113–120. 10.1016/j.tcb.2005.12.004 PubMed DOI
Wang J., Ding Y., Wang J., Hillmer S., Miao Y., Lo S. W., et al. . (2010). EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22, 4009–4030. 10.1105/tpc.110.080697 PubMed DOI PMC
Wang L. C., Tsai M. C., Chang K. Y., Fan Y. S., Yeh C. H., Wu S. J. (2011). Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. J. Exp. Bot. 62, 3609–3620. 10.1093/jxb/err060 PubMed DOI
Wang N., Lee I. J., Rask G., Wu J. Q. (2016). Roles of the TRAPP-II Complex and the exocyst in membrane deposition during fission yeast cytokinesis. PLOS Biol. 14:e1002437. 10.1371/journal.pbio.1002437 PubMed DOI PMC
Wen T. J., Hochholdinger F., Sauer M., Bruce W., Schnable P. S. (2005). The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol. 138, 1637–1643. 10.1104/pp.105.062174 PubMed DOI PMC
Woollard A. A., Moore I. (2008). The functions of Rab GTPases in plant membrane traffic. Curr. Opin. Plant Biol. 11, 610–619. 10.1016/j.pbi.2008.09.010 PubMed DOI
Wu B., Guo W. (2015). The exocyst at a glance. J. Cell Sci. 128, 2957–2964. 10.1242/jcs.156398 PubMed DOI PMC
Wu H., Rossi G., Brennwald P. (2008). The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends Cell Biol 18, 397–404. 10.1016/j.tcb.2008.06.007 PubMed DOI PMC
Wu S. J., Locy R. D., Shaw J. J., Cherry J. H., Singh N. K. (2000). Mutation in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J. Plant Physiol. 157, 543–547. 10.1016/S0176-1617(00)80110-8 DOI
Yalovsky S. (2015). Protein lipid modifications and the regulation of ROP GTPase function. J. Exp. Bot. 66, 1617–1624. 10.1093/jxb/erv057 PubMed DOI
Yorimitsu T., Sato K., Takeuchi M. (2014). Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front. Plant Sci. 5:411. 10.3389/fpls.2014.00411 PubMed DOI PMC
Yu S., Liang Y. (2012). A trapper keeper for TRAPP, its structures and functions. Cell Mol. Life Sci. 69, 3933–3944. 10.1007/s00018-012-1024-3 PubMed DOI PMC
Zárský V., Cvrčková F., Potocký M., Hála M. (2009). Exocytosis and cell polarity in plants–exocyst and recycling domains. New Phytol. 183, 255–272. 10.1111/j.1469-8137.2009.02880.x PubMed DOI
Zárský V., Kulich I., Fendrych M., Peèenková T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16, 726–733. 10.1016/j.pbi.2013.10.013 PubMed DOI
Zerial M., McBride H. (2001). Rab proteins as membrane organizers. Nat. Rev. Mol. Cell. Biol. 2, 107–117. 10.1038/35052055 PubMed DOI
Zhao P., Liu F., Zhang B., Liu X., Wang B., Gong J., et al. . (2013). MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport. Physiol. Plant 148, 246–260. 10.1111/j.1399-3054.2012.01704.x PubMed DOI
Zhao P., Lu J. (2014). MAIGO2 is involved in gibberellic acid, sugar, and heat shock responses during germination and seedling development in Arabidopsis. Acta Physiol. Plant 36, 315–321. 10.1007/s11738-013-1412-9 DOI
Zhao T., Rui L., Li J., Nishimura M. T., Vogel J. P., Liu N., et al. . (2015). A Truncated NLR Protein, TIR-NBS2, is required for activated defense responses in the exo70B1 Mutant. PLoS Genet. 11:e1004945. 10.1371/journal.pgen.1004945 PubMed DOI PMC
Zhao Y., Liu J., Yang C., Capraro B. R., Baumgart T., Bradley R. P., et al. . (2013). Exo70 generates membrane curvature for morphogenesis and cell migration. Dev. Cell 26, 266–278. 10.1016/j.devcel.2013.07.007 PubMed DOI PMC
Zheng Z. L., Yang Z. (2000). The Rop GTPase: an emerging signaling switch in plants. Plant Mol. Biol. 44, 1–9. 10.1023/A:1006402628948 PubMed DOI
Zink S., Wenzel D., Wurm C. A., Schmitt H. D. (2009). A link between ER tethering and COP-I vesicle uncoating. Dev. Cell 17, 403–416. 10.1016/j.devcel.2009.07.012 PubMed DOI
Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2
EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen