Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33519861
PubMed Central
PMC7840542
DOI
10.3389/fpls.2020.609600
Knihovny.cz E-zdroje
- Klíčová slova
- Exo70, exocyst, membrane trafficking, phosphorylation, pollen tube, secretion inhibitor, tip-growth,
- Publikační typ
- časopisecké články MeSH
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Laboratory of Cell Biology Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Plant Systems Biology Technische Universität München Freising Germany
Zobrazit více v PubMed
Beuder S., Dorchak A., Bhide A., Moeller S. R., Petersen B. L., MacAlister C. A. (2020). Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O-arabinosyltransferase mutants. PubMed DOI PMC
Bloch D., Pleskot R., Pejchar P., Potocký M., Trpkošová P., Cwiklik L., et al. (2016). Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. PubMed DOI PMC
Boavida L. C., McCormick S. (2007). Temperature as a determinant factor for increased and reproducible in vitro pollen germination in PubMed DOI
Caballero-Lima D., Sudbery P. E. (2014). In PubMed DOI PMC
Chen X. W., Leto D., Xiao J., Goss J., Wang Q., Shavit J. A., et al. (2011). Exocyst function is regulated by effector phosphorylation. PubMed DOI PMC
Chernyshova Y., Leshchyns’ka I., Hsu S. C., Schachner M., Sytnyk V. (2011). The neural cell adhesion molecule promotes FGFR-dependent phosphorylation and membrane targeting of the exocyst complex to induce exocytosis in growth cones. PubMed DOI PMC
Chong Y. T., Gidda S. K., Sanford C., Parkinson J., Mullen R. T., Goring D. R. (2010). Characterization of the PubMed DOI
Cole R. A., Synek L., Žárský V., Fowler J. E. (2005). SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. PubMed DOI PMC
Crooks G. E., Hon G., Chandoni A. J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. PubMed DOI PMC
Cvrcková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., et al. (2012). Evolution of the land plant exocyst complexes. PubMed DOI PMC
Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., et al. (2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. PubMed DOI PMC
Goodstein D. M., Shu S., Howson R., Neupane R., Haye S. R. D., Fazo J., et al. (2012). Phytozome: a comparative platform for green plant genomics. PubMed DOI PMC
Grobei M. A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., et al. (2009). Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. PubMed DOI PMC
Hála M., Cole R. A., Synek L., Drdová E., Pečenková T., Nordheim A., et al. (2008). An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. PubMed DOI PMC
He B., Xi F., Zhang X., Zhang J., Guo W. (2007). Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. PubMed DOI PMC
Heider M. R., Munson M. (2012). Exorcising the exocyst complex. PubMed DOI PMC
Hibara K., Karim M. R., Takada S., Taoka K., Furutani M., Aida M., et al. (2006). Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. PubMed DOI PMC
Hsu S.-C., Ting A. E., Hazuka C. D., Davanger S., Kenny J. W., Kee Y., et al. (1996). The mammalian brain rsec6/8 complex. PubMed DOI
Jones A. M. E., MacLean D., Studholme D. J., Serna-Sanz A., Andreasson E., Rathjen J. P., et al. (2009). Phosphoproteomic analysis of nuclei-enriched fractions from PubMed DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC
Kim D. E., Chivian D., Baker D. (2004). Protein structure prediction and analysis using the Robetta server. PubMed DOI PMC
Klahre U., Becker C., Schmitt A. C., Kost B. (2006). Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. PubMed DOI
Kost B., Spielhofer P., Chua N. H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments PubMed DOI
Koumandou V. L., Dacks J. B., Coulson R. M., Field M. C. (2007). Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. PubMed DOI PMC
Krol van der A., Lenting P., Veenstra J., et al. (1988). An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. DOI
Kubátová Z., Pejchar P., Potocký M., Sekereš J., Žárský V., Kulich I. (2019). Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. PubMed PMC
Kulich I., Cole R., Drdová E., Cvrcková F., Soukup A., Fowler J., et al. (2010). Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. PubMed DOI
Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. (2015). Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. PubMed DOI PMC
Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., et al. (2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. PubMed DOI PMC
Lai K. S. (2016). Analysis of EXO70C2 expression revealed its specific association with late stages of pollen development. DOI
Lepore D., Spassibojko O., Pinto G., Collins R. N. (2016). Cell cycle–dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis. PubMed DOI PMC
Li S., Chen M., Yu D., Ren S., Sun S., Liu L., et al. (2013). EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. PubMed DOI PMC
Liao F., Wang L., Yang L. B., Zhang L., Peng X., Sun M. X. (2013). Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PubMed DOI PMC
Liu J., Zuo X., Yue P., Guo W. (2007). Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. PubMed DOI PMC
Loraine A. E., McCormick S., Estrada A., Patel K., Qin P. (2013). RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. PubMed DOI PMC
Luo G., Zhang J., Luca F. C., Guo W. (2013). Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. PubMed DOI PMC
Lyons P. D., Peck G. R., Kettenbach A. N., Gerber S. A., Roudaia L., Lienhard G. E. (2009). Insulin stimulates the phosphorylation of the exocyst protein Sec8 in adipocytes. PubMed DOI PMC
Marković V., Cvrčková F., Potocký M., Kulich I., Pejchar P., Kollárová E., et al. (2020). EXO70A2 is critical for the exocyst complex function in Arabidopsis pollen. PubMed DOI PMC
Mayank P., Grossman J., Wuest S., Boisson-Dernier A., Roschitzki B., Nanni P., et al. (2012). Characterization of the phosphoproteome of mature Arabidopsis pollen: phosphoproteomics of the pollen grain. PubMed DOI
Mei K., Guo W. (2018). The exocyst complex. PubMed DOI
Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., et al. (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. PubMed DOI
Pečenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., et al. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. PubMed DOI PMC
Pleskot R., Cwiklik L., Jungwirth P., Zárský V., Potocký M. (2015). Membrane targeting of the yeast exocyst complex. PubMed DOI
Potocký M., Bezvoda R., Pejchar P. (2019). “Antisense oligodeoxynucleotide-mediated gene knockdown in pollen tubes,” in PubMed DOI
Qin Y., Dong J. (2015). Focusing on the focus: What else beyond the master switches for polar cell growth? PubMed DOI PMC
Rawat A., Brejšková L., Hála M., Cvrčková F., Žárský V. (2017). The PubMed
Ren J., Guo W. (2012). ERK1/2 regulate exocytosis through direct phosphorylation of the exocyst component Exo70. PubMed DOI PMC
Rossi G., Lepore D., Kenner L., Czuchra A. B., Plooster M., Frost A., et al. (2020). Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. PubMed DOI PMC
Schindelin J., Rueden C. T., Hiner M. C., Eliceiri K. W. (2015). The ImageJ ecosystem: an open platform for biomedical image analysis. PubMed DOI PMC
Sekereš J., Pejchar P., Šantrůček J., Vukašinović N., Žárský V., Potocký M. (2017). Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. PubMed DOI PMC
Sekereš J., Pleskot R., Pejchar P., Žárský V., Potocký M. (2015). The song of lipids and proteins: dynamic lipid–protein interfaces in the regulation of plant cell polarity at different scales. PubMed DOI
Smith C. J. S., Watson C. F., Ray J., Bird C. R., Morris P. C., Schuch W., et al. (1988). Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. DOI
Sun C., Höglund A. S., Olsson H., Mangelsen E., Jansson C. (2005). Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling: antisense ODN inhibition in plant biology. PubMed DOI
Synek L., Schlager N., Eliáš M., Quentin M., Hauser M. T., Zárský V. (2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. PubMed DOI PMC
Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., et al. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. PubMed DOI PMC
TerBush D. R., Maurice T., Roth D., Novick P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. PubMed DOI PMC
Tian C., Wang Y., Yu H., He J., Wang J., Shiet B., et al. (2019). A gene expression map of shoot domains reveals regulatory mechanisms. PubMed DOI PMC
Uhm M., Bazuine M., Zhao P., Chiang S. H., Xiong T., Karunanithi S., et al. (2017). Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. PubMed DOI
Vaškovičová K., Zárský V., Rösel D., Nikolič M., Buccione R., Cvrčková F., et al. (2013). Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. PubMed DOI PMC
Vukašinović N., Oda Y., Pejchar P., Synek L., Pecenková T., Rawat A., et al. (2016). Microtubule-dependent targeting of the exocyst complex is necessary for the xylem development in Arabidopsis. PubMed DOI
Vukašinović N., Žárský V. (2016). Tethering complexes in the Arabidopsis endomembrane system. PubMed DOI PMC
Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M., Barton G. J. (2009). Jalview Version 2–a multiple sequence alignment editor and analysis workbench. PubMed DOI PMC
Webb B., Sali A. (2016). Comparative protein structure modeling using MODELLER. PubMed DOI PMC
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G. V., Provart N. J. (2007). An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PubMed DOI PMC
Wu H., Turner C., Gardner J., Temple B., Brennwald P. (2010). The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. PubMed DOI PMC
Yuan S., Chan H. C. S., Filipek S., Vogel H. (2016). PyMOL and Inkscape bridge the data and the data visualization. PubMed DOI
Zárský V., Cvrčková F., Potocký M., Hála M. (2009). Exocytosis and cell polarity in plants: exocyst and recycling domains. PubMed DOI
Zárský V., Kulich I., Fendrych M., Pecenková T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. PubMed DOI
Žárský V., Sekereš J., Kubátová Z., Pečenková T., Cvrčková F. (2020). Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. PubMed DOI
Zhang Y., Liu C. M., Emons A. M. C., Ketelaar T. (2010). The plant exocyst. PubMed DOI
Zimmermann P., Hirsch-Hoffmann M., Hennig L., Gruissem W. (2004). GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. PubMed DOI PMC
Exocyst subunits EXO70B1 and B2 contribute to stomatal dynamics and cell wall modifications
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit