Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33519861
PubMed Central
PMC7840542
DOI
10.3389/fpls.2020.609600
Knihovny.cz E-zdroje
- Klíčová slova
- Exo70, exocyst, membrane trafficking, phosphorylation, pollen tube, secretion inhibitor, tip-growth,
- Publikační typ
- časopisecké články MeSH
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Laboratory of Cell Biology Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Plant Systems Biology Technische Universität München Freising Germany
Zobrazit více v PubMed
Beuder S., Dorchak A., Bhide A., Moeller S. R., Petersen B. L., MacAlister C. A. (2020). Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O-arabinosyltransferase mutants. Plant J. 103 1399–1419. 10.1111/tpj.14808 PubMed DOI PMC
Bloch D., Pleskot R., Pejchar P., Potocký M., Trpkošová P., Cwiklik L., et al. (2016). Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol. 172 980–1002. 10.1104/pp.16.00690 PubMed DOI PMC
Boavida L. C., McCormick S. (2007). Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52 570–582. 10.1111/j.1365-313X.2007.03248.x PubMed DOI
Caballero-Lima D., Sudbery P. E. (2014). In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol. Biol. Cell 25 1097–1110. 10.1091/mbc.E13-11-0688 PubMed DOI PMC
Chen X. W., Leto D., Xiao J., Goss J., Wang Q., Shavit J. A., et al. (2011). Exocyst function is regulated by effector phosphorylation. Nat. Cell Biol. 13 580–588. 10.1038/ncb2226 PubMed DOI PMC
Chernyshova Y., Leshchyns’ka I., Hsu S. C., Schachner M., Sytnyk V. (2011). The neural cell adhesion molecule promotes FGFR-dependent phosphorylation and membrane targeting of the exocyst complex to induce exocytosis in growth cones. J. Neurosci. Res. 31 3522–3535. 10.1523/JNEUROSCI.3109-10.2011 PubMed DOI PMC
Chong Y. T., Gidda S. K., Sanford C., Parkinson J., Mullen R. T., Goring D. R. (2010). Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol. 185 401–419. 10.1111/j.1469-8137.2009.03070.x PubMed DOI
Cole R. A., Synek L., Žárský V., Fowler J. E. (2005). SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 138 2005–2018. 10.1104/pp.105.062273 PubMed DOI PMC
Crooks G. E., Hon G., Chandoni A. J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14 1188–1190. 10.1101/gr.849004 PubMed DOI PMC
Cvrcková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., et al. (2012). Evolution of the land plant exocyst complexes. Front. Plant Sci. 3:159. 10.3389/fpls.2012.00159 PubMed DOI PMC
Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., et al. (2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22 3053–3065. 10.1105/tpc.110.074351 PubMed DOI PMC
Goodstein D. M., Shu S., Howson R., Neupane R., Haye S. R. D., Fazo J., et al. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 4 D1178–D1186. 10.1093/nar/gkr944 PubMed DOI PMC
Grobei M. A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., et al. (2009). Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19 1786–1800. 10.1101/gr.089060.108 PubMed DOI PMC
Hála M., Cole R. A., Synek L., Drdová E., Pečenková T., Nordheim A., et al. (2008). An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20 1330–1345. 10.1105/tpc.108.059105 PubMed DOI PMC
He B., Xi F., Zhang X., Zhang J., Guo W. (2007). Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 26 4053–4065. 10.1038/sj.emboj.7601834 PubMed DOI PMC
Heider M. R., Munson M. (2012). Exorcising the exocyst complex. Traffic 13 898–907. 10.1111/j.1600-0854.2012.01353.x PubMed DOI PMC
Hibara K., Karim M. R., Takada S., Taoka K., Furutani M., Aida M., et al. (2006). Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18 2946–2957. 10.1105/tpc.106.045716 PubMed DOI PMC
Hsu S.-C., Ting A. E., Hazuka C. D., Davanger S., Kenny J. W., Kee Y., et al. (1996). The mammalian brain rsec6/8 complex. Neuron 17 1209–1219. 10.1016/S0896-6273(00)80251-2 PubMed DOI
Jones A. M. E., MacLean D., Studholme D. J., Serna-Sanz A., Andreasson E., Rathjen J. P., et al. (2009). Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J. Proteomics 72 439–451. 10.1016/j.jprot.2009.02.004 PubMed DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kim D. E., Chivian D., Baker D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32 W526–W531. 10.1093/nar/gkh468 PubMed DOI PMC
Klahre U., Becker C., Schmitt A. C., Kost B. (2006). Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 46 1018–1031. 10.1111/j.1365-313x.2006.02757.x PubMed DOI
Kost B., Spielhofer P., Chua N. H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16 393–401. 10.1046/j.1365-313x.1998.00304.x PubMed DOI
Koumandou V. L., Dacks J. B., Coulson R. M., Field M. C. (2007). Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7:29. 10.1186/1471-2148-7-29 PubMed DOI PMC
Krol van der A., Lenting P., Veenstra J., et al. (1988). An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333 866–869. 10.1038/333866a0 DOI
Kubátová Z., Pejchar P., Potocký M., Sekereš J., Žárský V., Kulich I. (2019). Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. Int. J. Mol. Sci. 20:3803. PubMed PMC
Kulich I., Cole R., Drdová E., Cvrcková F., Soukup A., Fowler J., et al. (2010). Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 188 615–625. 10.1111/j.1469-8137.2010.03372.x PubMed DOI
Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. (2015). Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 168 120–131. 10.1104/pp.15.00112 PubMed DOI PMC
Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., et al. (2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 176 2040–2051. 10.1104/pp.17.01693 PubMed DOI PMC
Lai K. S. (2016). Analysis of EXO70C2 expression revealed its specific association with late stages of pollen development. Plant Cell Tissue Organ Cult. 12 209–215. 10.1007/s11240-015-0882-5 DOI
Lepore D., Spassibojko O., Pinto G., Collins R. N. (2016). Cell cycle–dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis. J. Cell Biol. 214 691–703. 10.1083/jcb.201602038 PubMed DOI PMC
Li S., Chen M., Yu D., Ren S., Sun S., Liu L., et al. (2013). EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell 25 1774–1786. 10.1105/tpc.113.112144 PubMed DOI PMC
Liao F., Wang L., Yang L. B., Zhang L., Peng X., Sun M. X. (2013). Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS One 8:e59112. 10.1371/journal.pone.0059112 PubMed DOI PMC
Liu J., Zuo X., Yue P., Guo W. (2007). Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell 18 4483–4492. 10.1091/mbc.E07-05-0461 PubMed DOI PMC
Loraine A. E., McCormick S., Estrada A., Patel K., Qin P. (2013). RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol. 162 1092–1109. 10.1104/pp.112.211441 PubMed DOI PMC
Luo G., Zhang J., Luca F. C., Guo W. (2013). Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. J. Cell Biol. 202 97–111. 10.1083/jcb.201211093 PubMed DOI PMC
Lyons P. D., Peck G. R., Kettenbach A. N., Gerber S. A., Roudaia L., Lienhard G. E. (2009). Insulin stimulates the phosphorylation of the exocyst protein Sec8 in adipocytes. Biosci. Rep. 229 229–235. 10.1042/BSR20080162 PubMed DOI PMC
Marković V., Cvrčková F., Potocký M., Kulich I., Pejchar P., Kollárová E., et al. (2020). EXO70A2 is critical for the exocyst complex function in Arabidopsis pollen. Plant Physiol. 184 1823–1839. 10.1101/831875 PubMed DOI PMC
Mayank P., Grossman J., Wuest S., Boisson-Dernier A., Roschitzki B., Nanni P., et al. (2012). Characterization of the phosphoproteome of mature Arabidopsis pollen: phosphoproteomics of the pollen grain. Plant J. 72 89–101. 10.1111/j.1365-313X.2012.05061.x PubMed DOI
Mei K., Guo W. (2018). The exocyst complex. Curr. Biol. 28 R922–R925. 10.1016/j.cub.2018.06.042 PubMed DOI
Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., et al. (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579 409–414. 10.1038/s41586-020-2094-2 PubMed DOI
Pečenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., et al. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 62 2107–2116. 10.1093/jxb/erq402 PubMed DOI PMC
Pleskot R., Cwiklik L., Jungwirth P., Zárský V., Potocký M. (2015). Membrane targeting of the yeast exocyst complex. Biochim Biophys Acta 1848 1481–1489. 10.1016/j.bbamem.2015.03.026 PubMed DOI
Potocký M., Bezvoda R., Pejchar P. (2019). “Antisense oligodeoxynucleotide-mediated gene knockdown in pollen tubes,” in Plant Cell Morphogenesis: Methods and Protocols, eds Žárský F., Cvrčková V. (New York, NY: Springer; ), 359–365. 10.1007/978-1-4939-9469-4_24 PubMed DOI
Qin Y., Dong J. (2015). Focusing on the focus: What else beyond the master switches for polar cell growth? Mol. Plant 8 582–594. 10.1016/j.molp.2014.12.023 PubMed DOI PMC
Rawat A., Brejšková L., Hála M., Cvrčková F., Žárský V. (2017). The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytol. 216 438–454. PubMed
Ren J., Guo W. (2012). ERK1/2 regulate exocytosis through direct phosphorylation of the exocyst component Exo70. Dev. Cell 22 967–978. 10.1016/j.devcel.2012.03.005 PubMed DOI PMC
Rossi G., Lepore D., Kenner L., Czuchra A. B., Plooster M., Frost A., et al. (2020). Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J. Cell Biol. 219:e201904161. 10.1083/jcb.201904161 PubMed DOI PMC
Schindelin J., Rueden C. T., Hiner M. C., Eliceiri K. W. (2015). The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82 518–529. 10.1002/mrd.22489 PubMed DOI PMC
Sekereš J., Pejchar P., Šantrůček J., Vukašinović N., Žárský V., Potocký M. (2017). Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol. 173 1659–1675. 10.1104/pp.16.01709 PubMed DOI PMC
Sekereš J., Pleskot R., Pejchar P., Žárský V., Potocký M. (2015). The song of lipids and proteins: dynamic lipid–protein interfaces in the regulation of plant cell polarity at different scales. J. Exp. Bot. 66 1587–1598. 10.1093/jxb/erv052 PubMed DOI
Smith C. J. S., Watson C. F., Ray J., Bird C. R., Morris P. C., Schuch W., et al. (1988). Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334 724–726. 10.1038/334724a0 DOI
Sun C., Höglund A. S., Olsson H., Mangelsen E., Jansson C. (2005). Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling: antisense ODN inhibition in plant biology. Plant J. 44 128–138. 10.1111/j.1365-313X.2005.02515.x PubMed DOI
Synek L., Schlager N., Eliáš M., Quentin M., Hauser M. T., Zárský V. (2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48 54–72. 10.1111/j.1365-313X.2006.02854.x PubMed DOI PMC
Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., et al. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol. 174 223–240. 10.1104/pp.16.01282 PubMed DOI PMC
TerBush D. R., Maurice T., Roth D., Novick P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15 6483–6494. 10.1002/j.1460-2075.1996.tb01039.x PubMed DOI PMC
Tian C., Wang Y., Yu H., He J., Wang J., Shiet B., et al. (2019). A gene expression map of shoot domains reveals regulatory mechanisms. Nat. Commun. 10:141. 10.1038/s41467-018-08083-z PubMed DOI PMC
Uhm M., Bazuine M., Zhao P., Chiang S. H., Xiong T., Karunanithi S., et al. (2017). Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. Sci. Signal. 10:eaah5085. 10.1126/scisignal.aah5085 PubMed DOI
Vaškovičová K., Zárský V., Rösel D., Nikolič M., Buccione R., Cvrčková F., et al. (2013). Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol. Direct. 8:8. 10.1186/1745-6150-8-8 PubMed DOI PMC
Vukašinović N., Oda Y., Pejchar P., Synek L., Pecenková T., Rawat A., et al. (2016). Microtubule-dependent targeting of the exocyst complex is necessary for the xylem development in Arabidopsis. New Phytol. 213 1052–1067. 10.1111/nph.14267 PubMed DOI
Vukašinović N., Žárský V. (2016). Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol. 4:46. 10.3389/fcell.2016.00046 PubMed DOI PMC
Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M., Barton G. J. (2009). Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 1189–1191. 10.1093/bioinformatics/btp033 PubMed DOI PMC
Webb B., Sali A. (2016). Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 86:Unit-5.6. 10.1002/cpps.20 PubMed DOI PMC
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G. V., Provart N. J. (2007). An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718. 10.1371/journal.pone.0000718 PubMed DOI PMC
Wu H., Turner C., Gardner J., Temple B., Brennwald P. (2010). The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell 21 430–442. 10.1091/mbc.e09-06-0501 PubMed DOI PMC
Yuan S., Chan H. C. S., Filipek S., Vogel H. (2016). PyMOL and Inkscape bridge the data and the data visualization. Structure 24 2041–2042. 10.1016/j.str.2016.11.012 PubMed DOI
Zárský V., Cvrčková F., Potocký M., Hála M. (2009). Exocytosis and cell polarity in plants: exocyst and recycling domains. New Phytol. 183 255–272. 10.1111/j.1469-8137.2009.02880.x PubMed DOI
Zárský V., Kulich I., Fendrych M., Pecenková T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16 726–733. 10.1016/j.pbi.2013.10.013 PubMed DOI
Žárský V., Sekereš J., Kubátová Z., Pečenková T., Cvrčková F. (2020). Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J. Exp. Bot. 71 49–62. 10.1093/jxb/erz423 PubMed DOI
Zhang Y., Liu C. M., Emons A. M. C., Ketelaar T. (2010). The plant exocyst. J. Integr. Plant Biol. 52 138–146. 10.1111/j.1744-7909.2010.00929.x PubMed DOI
Zimmermann P., Hirsch-Hoffmann M., Hennig L., Gruissem W. (2004). GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136 2621–2632. 10.1104/pp.104.046367 PubMed DOI PMC