Arabidopsis Trichome Contains Two Plasma Membrane Domains with Different Lipid Compositions Which Attract Distinct EXO70 Subunits

. 2019 Aug 03 ; 20 (15) : . [epub] 20190803

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31382643

Grantová podpora
18-12579S Grantová Agentura České Republiky
NPUI LO1417 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/4.1.00/16.0347 European Regional Development Fund

Plasma membrane (PM) lipid composition and domain organization are modulated by polarized exocytosis. Conversely, targeting of secretory vesicles at specific domains in the PM is carried out by exocyst complexes, which contain EXO70 subunits that play a significant role in the final recognition of the target membrane. As we have shown previously, a mature Arabidopsis trichome contains a basal domain with a thin cell wall and an apical domain with a thick secondary cell wall, which is developed in an EXO70H4-dependent manner. These domains are separated by a cell wall structure named the Ortmannian ring. Using phospholipid markers, we demonstrate that there are two distinct PM domains corresponding to these cell wall domains. The apical domain is enriched in phosphatidic acid (PA) and phosphatidylserine, with an undetectable amount of phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the basal domain is PIP2-rich. While the apical domain recruits EXO70H4, the basal domain recruits EXO70A1, which corresponds to the lipid-binding capacities of these two paralogs. Loss of EXO70H4 results in a loss of the Ortmannian ring border and decreased apical PA accumulation, which causes the PA and PIP2 domains to merge together. Using transmission electron microscopy, we describe these accumulations as a unique anatomical feature of the apical cell wall-radially distributed rod-shaped membranous pockets, where both EXO70H4 and lipid markers are immobilized.

Zobrazit více v PubMed

Szymanski D.B., Lloyd A.M., Marks M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 2000;5:214–219. doi: 10.1016/S1360-1385(00)01597-1. PubMed DOI

Hülskamp M. Plant trichomes: A model for cell differentiation. Nat. Rev. Mol. Cell Biol. 2004;5:471–480. doi: 10.1038/nrm1404. PubMed DOI

Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 2015;168:120–131. doi: 10.1104/pp.15.00112. PubMed DOI PMC

Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., Žárský V. Exocyst Subunit EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation. Plant Physiol. 2018;176:2040–2051. doi: 10.1104/pp.17.01693. PubMed DOI PMC

Hegebarth D., Buschhaus C., Joubès J., Thoraval D., Bird D., Jetter R. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C/C acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ. 2017;40:1761–1776. doi: 10.1111/pce.12981. PubMed DOI

TerBush D.R., Maurice T., Roth D., Novick P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996;15:6483–6494. doi: 10.1002/j.1460-2075.1996.tb01039.x. PubMed DOI PMC

Hsu S.-C., TerBush D., Abraham M., Guo W. The exocyst complex in polarized exocytosis. Int. Rev. Cytol. 2004;233:243–265. PubMed

Lepore D.M., Martínez-Núñez L., Munson M. Exposing the Elusive Exocyst Structure. Trends Biochem. Sci. 2018;43:714–725. doi: 10.1016/j.tibs.2018.06.012. PubMed DOI PMC

Liu J., Zuo X., Yue P., Guo W. Phosphatidylinositol 4,5-Bisphosphate Mediates the Targeting of the Exocyst to the Plasma Membrane for Exocytosis in Mammalian Cells. Mol. Biol. Cell. 2007;18:4483–4492. doi: 10.1091/mbc.e07-05-0461. PubMed DOI PMC

Zhang X., Orlando K., He B., Xi F., Zhang J., Zajac A., Guo W. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J. Cell Biol. 2008;180:145–158. doi: 10.1083/jcb.200704128. PubMed DOI PMC

Bendezú F.O., Vincenzetti V., Martin S.G. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles. PLoS ONE. 2012;7:e40248. doi: 10.1371/journal.pone.0040248. PubMed DOI PMC

Luo G., Zhang J., Guo W. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell. 2014;25:3813–3822. doi: 10.1091/mbc.e14-04-0907. PubMed DOI PMC

He B., Xi F., Zhang X., Zhang J., Guo W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 2007;26:4053–4065. doi: 10.1038/sj.emboj.7601834. PubMed DOI PMC

Yue P., Zhang Y., Mei K., Wang S., Lesigang J., Zhu Y., Dong G., Guo W. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun. 2017;8:14236. doi: 10.1038/ncomms14236. PubMed DOI PMC

Sekereš J., Pleskot R., Pejchar P., Žárský V., Potocký M. The song of lipids and proteins: Dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. J. Exp. Bot. 2015;66:1587–1598. doi: 10.1093/jxb/erv052. PubMed DOI

Elias M., Drdova E., Ziak D., Bavlnka B., Hala M., Cvrckova F., Soukupova H., Zarsky V. The exocyst complex in plants. Cell Biol. Int. 2003;27:199–201. doi: 10.1016/S1065-6995(02)00349-9. PubMed DOI

Synek L., Schlager N., Eliás M., Quentin M., Hauser M.-T., Zárský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006;48:54–72. doi: 10.1111/j.1365-313X.2006.02854.x. PubMed DOI PMC

Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., Zárský V. Evolution of the land plant exocyst complexes. Front. Plant Sci. 2012;3:159. doi: 10.3389/fpls.2012.00159. PubMed DOI PMC

Zárský V., Cvrcková F., Potocký M., Hála M. Exocytosis and cell polarity in plants–exocyst and recycling domains. New Phytol. 2009;183:255–272. doi: 10.1111/j.1469-8137.2009.02880.x. PubMed DOI

Sekereš J., Pejchar P., Šantrůček J., Vukašinović N., Žárský V., Potocký M. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. Plant Physiol. 2017;173:1659–1675. doi: 10.1104/pp.16.01709. PubMed DOI PMC

Simon M.L.A., Platre M.P., Assil S., van Wijk R., Chen W.Y., Chory J., Dreux M., Munnik T., Jaillais Y. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 2014;77:322–337. doi: 10.1111/tpj.12358. PubMed DOI PMC

Potocký M., Pleskot R., Pejchar P., Vitale N., Kost B., Zárský V. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 2014;203:483–494. doi: 10.1111/nph.12814. PubMed DOI

Platre M.P., Noack L.C., Doumane M., Bayle V., Simon M.L.A., Maneta-Peyret L., Fouillen L., Stanislas T., Armengot L., Pejchar P., et al. A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Dev. Cell. 2018;45:465–480. doi: 10.1016/j.devcel.2018.04.011. PubMed DOI

Wu C., Tan L., van Hooren M., Tan X., Liu F., Li Y., Zhao Y., Li B., Rui Q., Munnik T., et al. Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit. J. Integr. Plant Biol. 2017;59:851–865. doi: 10.1111/jipb.12578. PubMed DOI

Zhang X., Oppenheimer D.G. A simple and efficient method for isolating trichomes for downstream analyses. Plant Cell Physiol. 2004;45:221–224. doi: 10.1093/pcp/pch016. PubMed DOI

Lee B.H., Weber Z.T., Zourelidou M., Hofmeister B.T., Schmitz R.J., Schwechheimer C., Dobritsa A.A. Arabidopsis Protein Kinase D6PKL3 Is Involved in the Formation of Distinct Plasma Membrane Aperture Domains on the Pollen Surface. Plant Cell. 2018;30:2038–2056. doi: 10.1105/tpc.18.00442. PubMed DOI PMC

Ferguson C., Teeri T.T., Siika-aho M., Read S.M., Bacic A. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta. 1998;206:452–460. doi: 10.1007/s004250050421. DOI

Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell. 2009;21:2357–2377. doi: 10.1105/tpc.108.062992. PubMed DOI PMC

Sang Y., Cui D., Wang X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 2001;126:1449–1458. doi: 10.1104/pp.126.4.1449. PubMed DOI PMC

Torres M.A., Dangl J.L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 2005;8:397–403. doi: 10.1016/j.pbi.2005.05.014. PubMed DOI

Torres M.A., Dangl J.L., Jones J.D.G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA. 2002;99:517–522. doi: 10.1073/pnas.012452499. PubMed DOI PMC

Testerink C., Munnik T. Phosphatidic acid: A multifunctional stress signaling lipid in plants. Trends Plant Sci. 2005;10:368–375. doi: 10.1016/j.tplants.2005.06.002. PubMed DOI

Bélanger R.R. The Powdery Mildews: A Comprehensive Treatise. Amer Phytopathological Society; Amer, India: 2002.

Assaad F.F., Qiu J.-L., Youngs H., Ehrhardt D., Zimmerli L., Kalde M., Wanner G., Peck S.C., Edwards H., Ramonell K., et al. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell. 2004;15:5118–5129. doi: 10.1091/mbc.e04-02-0140. PubMed DOI PMC

Putta P., Rankenberg J., Korver R.A., van Wijk R., Munnik T., Testerink C., Kooijman E.E. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim. Biophys. Acta. 2016;1858:2709–2716. doi: 10.1016/j.bbamem.2016.07.014. PubMed DOI

Zhao Y., Liu J., Yang C., Capraro B.R., Baumgart T., Bradley R.P., Ramakrishnan N., Xu X., Radhakrishnan R., Svitkina T., et al. Exo70 generates membrane curvature for morphogenesis and cell migration. Dev. Cell. 2013;26:266–278. doi: 10.1016/j.devcel.2013.07.007. PubMed DOI PMC

Marks M.D., Gilding E., Wenger J.P. Genetic interaction between glabra3-shapeshifter and siamese in Arabidopsis thaliana converts trichome precursors into cells with meristematic activity. Plant J. 2007;52:352–361. doi: 10.1111/j.1365-313X.2007.03243.x. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Karimi M., Bleys A., Vanderhaeghen R., Hilson P. Building blocks for plant gene assembly. Plant Physiol. 2007;145:1183–1191. doi: 10.1104/pp.107.110411. PubMed DOI PMC

Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth

. 2025 Jan ; 48 (1) : 451-469. [epub] 20240913

Exploring lipid-protein interactions in plant membranes

. 2024 Sep 11 ; 75 (17) : 5251-5266.

Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew

. 2024 Mar 29 ; 36 (4) : 1007-1035.

DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis

. 2022 Oct 27 ; 190 (3) : 1978-1996.

Plant extracellular vesicles and their potential in human health research, the practical approach

. 2022 Jul 29 ; 71 (3) : 327-339.

Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations

. 2022 Mar 17 ; 23 (6) : . [epub] 20220317

Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit

AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells

. 2021 May 10 ; 31 (9) : 1918-1930.e5. [epub] 20210310

EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development

. 2020 Dec ; 184 (4) : 1823-1839. [epub] 20201013

Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2

. 2020 ; 11 () : 609600. [epub] 20210114

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...