Exploring lipid-protein interactions in plant membranes

. 2024 Sep 11 ; 75 (17) : 5251-5266.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38708855

Grantová podpora
GA22-35916S Czech Science Foundation

Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.

Zobrazit více v PubMed

Alvarez-Venegas R, Sadder M, Hlavacka A, et al.. 2006. The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proceedings of the National Academy of Sciences, USA 103, 6049–6054. PubMed PMC

Backues SK, Bednarek SY.. 2010. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes. Biochemical and Biophysical Research Communications 393, 734–739. PubMed PMC

Bahammou D, Recorbet G, Cassim AM, Robert F, Balliau T, Van Delft P, Haddad Y, Mongrand S, Fouillen L, Simon-Plas F.. 2024. A combined lipidomic and proteomic profiling of Arabidopsis thaliana plasma membrane. The Plant Journal doi: 10.1111/tpj.16810 PubMed DOI

Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 93, 1019–1137. PubMed PMC

Barajas-Lopez JD, Tiwari A, Zarza X, Shaw MW, Pascual J, Punkkinen M, Bakowska JC, Munnik T, Fujii H.. 2021. EARLY RESPONSE TO DEHYDRATION 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant and Cell Physiology 62, 80–91. PubMed

Barbosa ICR, Shikata H, Zourelidou M, Heilmann M, Heilmann I, Schwechheimer C.. 2016. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development 143, 4687–4700. PubMed

Benavente JL, Siliqi D, Infantes L, Lagartera L, Mills A, Gago F, Ruiz-López N, Botella MA, Sánchez-Barrena MJ, Albert A.. 2021. The structure and flexibility analysis of the Arabidopsis synaptotagmin 1 reveal the basis of its regulation at membrane contact sites. Life Science Alliance 4, e202101152. PubMed PMC

Birchenough HL, Jowitt TA.. 2021. Quartz crystal microbalance with dissipation monitoring (QCM-D): preparing functionalized lipid layers for the study of complex protein–ligand interactions. Methods in Molecular Biology 2263, 183–197. PubMed

Brault ML, Petit JD, Immel F, et al.. 2019. Multiple C2 domains and transmembrane region proteins (mctps) tether membranes at plasmodesmata. EMBO Reports 20, e47182. PubMed PMC

Caillaud MC. 2019. Anionic lipids: a pipeline connecting key players of plant cell division. Frontiers in Plant Science 10, 419. PubMed PMC

Cao C, Wang P, Song H, Jing W, Shen L, Zhang Q, Zhang W.. 2017. Phosphatidic acid binds to and regulates guanine nucleotide exchange factor 8 (GEF8) activity in Arabidopsis. Functional Plant Biology 44, 1029–1038. PubMed

Colin LA, Jaillais Y.. 2020. Phospholipids across scales: lipid patterns and plant development. Current Opinion in Plant Biology 53, 1–9. PubMed

Deeken R, Saupe S, Klinkenberg J, Riedel M, Leide J, Hedrich R, Mueller TD.. 2016. The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of Arabidopsis thaliana crown galls. Plant Physiology 172, 1911–1927. PubMed PMC

de Jong F, Munnik T.. 2021. Attracted to membranes: lipid-binding domains in plants. Plant Physiology 185, 707–723. PubMed PMC

Doumane M, Lebecq A, Colin L, et al.. 2021. Inducible depletion of PI(4,5)P2 by the synthetic iDePP system in Arabidopsis. Nature Plants 7, 587–597. PubMed PMC

Fan R, Zhao F, Gong Z, et al.. 2023. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nature Communications 14, 194. PubMed PMC

Farley S, Laguerre A, Schultz C.. 2021. Caged lipids for subcellular manipulation. Current Opinion in Chemical Biology 65, 42–48. PubMed PMC

Furt F, Simon-Plas F, Mongrand S.. 2011. Lipids of the plant plasma membrane. In: Murphy A, Schulz B, Peer W, eds. The plant plasma membrane. Berlin, Heidelberg: Springer, 3–30.

Gao W, Li HY, Xiao S, Chye ML.. 2010. Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. The Plant Journal 62, 989–1003. PubMed

Ge J, Du S, Yao SQ.. 2022. Bifunctional lipid-derived affinity-based probes (AfBPs) for analysis of lipid–protein interactome. Accounts of Chemical Research 55, 3663–3674. PubMed

Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M.. 2017. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. The Plant Journal 92, 862–878. PubMed

Goldy C, Caillaud MC.. 2023. Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. Current Opinion in Plant Biology 73, 102365. PubMed

Gozani O, Karuman P, Jones DR, et al.. 2003. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111. PubMed

Gronnier J, Crowet JM, Habenstein B, et al.. 2017. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 6, e26404. PubMed PMC

Guo L, Mishra G, Taylor K, Wang X.. 2011. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. Journal of Biological Chemistry 286, 13336–13345. PubMed PMC

Hammond GRV, Takasuga S, Sasaki T, Balla T.. 2015. The ML1Nx2 phosphatidylinositol 3,5-bisphosphate probe shows poor selectivity in cells. PLoS One 10, e0139957. PubMed PMC

Hammond GRV, Ricci MMC, Weckerly CC, Wills RC.. 2022. An update on genetically encoded lipid biosensors. Molecular Biology of the Cell 33, tp2. PubMed PMC

Han X, Shi Y, Liu G, Guo Y, Yang Y.. 2018. Activation of ROP6 GTPase by phosphatidylglycerol in Arabidopsis. Frontiers in Plant Science 9, 347. PubMed PMC

Han X, Yang Y, Zhao F, Zhang T, Yu X.. 2020. An improved protein lipid overlay assay for studying lipid–protein interactions. Plant Methods 16, 33. PubMed PMC

Heilmann M, Heilmann I.. 2022. Regulators regulated: different layers of control for plasma membrane phosphoinositides in plants. Current Opinion in Plant Biology 67, 102218. PubMed

Herianto S, Chen CS, Zhu H.. 2019. Protein microarrays and liposome: a method for studying lipid–protein interactions. Methods in Molecular Biology 2003, 191–199. PubMed

Herianto S, Rathod J, Shah P, Chen YZ, Wu WS, Liang B, Chen CS.. 2021. Systematic analysis of phosphatidylinositol-5-phosphate-interacting proteins using yeast proteome microarrays. Analytical Chemistry 93, 868–877. PubMed

Herianto S, Subramani B, Chen BR, Chen CS.. 2022. Recent advances in liposome development for studying protein–lipid interactions. Critical Reviews in Biotechnology 44, 1–14. PubMed

Hirano T, Konno H, Takeda S, Dolan L, Kato M, Aoyama T, Higaki T, Takigawa-Imamura H, Sato MH.. 2018. PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis. Nature Plants 4, 888–897. PubMed

Hirano T, Stecker K, Munnik T, Xu H, Sato MH.. 2017. Visualization of phosphatidylinositol 3,5-bisphosphate dynamics by a tandem ML1N-based fluorescent protein probe in Arabidopsis. Plant and Cell Physiology 58, 1185–1195. PubMed PMC

Hofbauer HF, Gecht M, Fischer SC, Seybert A, Frangakis AS, Stelzer EHK, Covino R, Hummer G, Ernst R.. 2018. The molecular recognition of phosphatidic acid by an amphipathic helix in Opi1. Journal of Cell Biology 217, 3109–3126. PubMed PMC

Hundertmark M, Dimova R, Lengefeld J, Seckler R, Hincha DK.. 2011. The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Biochimica et Biophysica Acta 1808, 446–453. PubMed

Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M.. 2019. CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1. Plant Physiology 180, 2004–2021. PubMed PMC

Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I.. 2011. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. The Plant Journal 65, 453–468. PubMed

Iswanto ABB, Shon JC, Liu KH, Vu MH, Kumar R, Kim JY.. 2020. Sphingolipids modulate secretion of glycosylphosphatidylinositol-anchored plasmodesmata proteins and callose deposition. Plant Physiology 184, 407–420. PubMed PMC

Ito Y, Esnay N, Fougère L, Platre MP, Cordelières F, Jaillais Y, Boutté Y.. 2021a. Inhibition of very long chain fatty acids synthesis mediates PI3P homeostasis at endosomal compartments. International Journal of Molecular Sciences 22, 8450. PubMed PMC

Ito Y, Esnay N, Platre MP, et al.. 2021b. Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network. Nature Communications 12, 4267. PubMed PMC

Jiménez-López C, Nadler A.. 2023. Caged lipid probes for controlling lipid levels on subcellular scales. Current Opinion in Chemical Biology 72, 102234. PubMed

Jose GP, Gopan S, Bhattacharyya S, Pucadyil TJ.. 2020. A facile, sensitive and quantitative membrane-binding assay for proteins. Traffic 21, 297–305. PubMed

Jose GP, Pucadyil TJ.. 2020. PLiMAP: proximity-based labeling of membrane-associated proteins. Current Protocols in Protein Science 101, e110. PubMed

Julkowska MM, Rankenberg JM, Testerink C.. 2013. Liposome-binding assays to assess specificity and affinity of phospholipid–protein interactions. Methods in Molecular Biology 1009, 261–271. PubMed

Kalachova T, Škrabálková E, Pateyron S, et al.. 2022. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiology 190, 1978–1996. PubMed PMC

Kassas N, Tanguy E, Thahouly T, Fouillen L, Heintz D, Chasserot-Golaz S, Bader MF, Grant NJ, Vitale N.. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. Journal of Biological Chemistry 292, 4266–4279. PubMed PMC

Kastner C, Wagner VC, Fratini M, Dobritzsch D, Fuszard M, Heilmann M, Heilmann I.. 2022. The pollen-specific class VIII-myosin ATM2 from Arabidopsis thaliana associates with the plasma membrane through a polybasic region binding anionic phospholipids. Biochimie 203, 65–76. PubMed

Kelly AA, Kalisch B, Hölzl G, Schulze S, Thiele J, Melzer M, Roston RL, Benning C, Dörmann P.. 2016. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 113, 10714–10719. PubMed PMC

Kim SC, Wang X.. 2020. Phosphatidic acid: an emerging versatile class of cellular mediators. Essays in Biochemistry 64, 533–546. PubMed

Kim SC, Nusinow DA, Sorkin ML, Pruneda-Paz J, Wang X.. 2019. Interaction and regulation between lipid mediator phosphatidic acid and circadian clock regulators. The Plant Cell 31, 399–416. PubMed PMC

Kubátová Z, Pejchar P, Potocký M, Sekereš J, Žárský V, Kulich I.. 2019. Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. International Journal of Molecular Sciences 20, 3803. PubMed PMC

Kulich I, Schmid J, Teplova A, Qi L, Friml J.. 2024. Rapid redirection of auxin fluxes during root gravitropism by translocation of NGR proteins driving polarization of PIN-activating kinases. eLife 12, RP91523. PubMed PMC

Lee J, Yamaoka Y, Kong F, Cagnon C, Beyly-Adriano A, Jang S, Gao P, Kang B-H, Li-Beisson Y, Lee Y.. 2020. The phosphatidylethanolamine-binding protein DTH1 mediates degradation of lipid droplets in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, USA 117, 23131–23139. PubMed PMC

Li J, Wang Z, Chang Z, He H, Tang X, Ma L, Deng XW.. 2021. A functional characterization of TaMs1 orthologs in Poaceae plants. The Crop Journal 9, 1291–1300.

Li W, Song T, Wallrad L, Kudla J, Wang X, Zhang W.. 2019. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants 5, 1012–1021. PubMed

Li X, Wang X, Zhang X, Zhao M, Tsang WL, Zhang Y, Yau RGW, Weisman LS, Xu H.. 2013. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proceedings of the National Academy of Sciences, USA 110, 21165–21170. PubMed PMC

Linster E, Layer D, Bienvenut WV, et al.. 2020. The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. New Phytologist 228, 554–569. PubMed

Liu C, Mentzelopoulou A, Papagavriil F, et al.. 2023. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis. PLoS Biology 21, e3002305. PubMed PMC

Liu NJ, Zhang T, Liu ZH, et al.. 2020. Phytosphinganine affects plasmodesmata permeability via facilitating PDLP5-stimulated callose accumulation in Arabidopsis. Molecular Plant 13, 128–143. PubMed

Liu X, An J, Wang L, et al.. 2022. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division. The Plant Cell 34, 419–432. PubMed PMC

Maekawa M, Fairn GD.. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. Journal of Cell Science 128, 1422–1433. PubMed

Mallery EL, Yanagisawa M, Zhang C, Lee Y, Robles LM, Alonso JM, Szymanski DB.. 2022. Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. Journal of Cell Science 135, jcs259825. PubMed

Manifava M, Thuring JW, Lim ZY, Packman L, Holmes AB, Ktistakis NT.. 2001. Differential binding of traffic-related proteins to phosphatidic acid- or phosphatidylinositol (4,5)-bisphosphate-coupled affinity reagents. Journal of Biological Chemistry 276, 8987–8994. PubMed

Marković V, Jaillais Y.. 2022. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. New Phytologist 235, 867–874. PubMed

McLoughlin F, Arisz SA, Dekker HL, Kramer G, De Koster CG, Haring MA, Munnik T, Testerink C.. 2013. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. The Biochemical Journal 450, 573–581. PubMed

Meijer HJG, Munnik T.. 2003. Phospholipid-based signaling in plants. Annual Review of Plant Biology 54, 265–306. PubMed

Miao R, Lung SC, Li X, Li XD, Chye ML.. 2019. Thermodynamic insights into an interaction between ACYL-CoA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. Journal of Biological Chemistry 294, 6214–6226. PubMed PMC

Mishra G, Zhang W, Deng F, Zhao J, Wang X.. 2006. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312, 264–266. PubMed

Nakamura Y. 2017. Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends in Plant Science 22, 1027–1040. PubMed

Neubergerová M, Pleskot R.. 2024. Plant protein–lipid interfaces studied by molecular dynamics simulations. Journal of Experimental Botany 75, 5237–5250. doi: 10.1093/jxb/erae228 PubMed DOI

Nielsen SB, Otzen DE.. 2019. Quartz crystal microbalances as tools for probing protein–membrane interactions. Methods in Molecular Biology 2003, 31–52. PubMed

Niphakis MJ, Lum KM, Cognetta AB, et al.. 2015. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680. PubMed PMC

Noack LC, Pejchar P, Sekereš J, Jaillais Y, Potocký M.. 2019. Transient gene expression as a tool to monitor and manipulate the levels of acidic phospholipids in plant cells. Methods in Molecular Biology 1992, 189–199. PubMed

Pandit S, Dalal V, Mishra G.. 2018. Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Plant Physiology and Biochemistry 128, 178–184. PubMed

Pandit S, Goel R, Mishra G.. 2022. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. Plant Physiology and Biochemistry 185, 344–355. PubMed

Pejchar P, Sekereš J, Novotný O, Žárský V, Potocký M.. 2020. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. The Plant Journal 103, 212–226. PubMed

Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T.. 2020. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. Journal of Cell Biology 219, e201906130. PubMed PMC

Pendaries C, Tronchère H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B.. 2006. PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. The EMBO Journal 25, 1024–1034. PubMed PMC

Platre MP, Bayle V, Armengot L, et al.. 2019. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364, 57–62. PubMed

Platre MP, Jaillais Y.. 2021. Exogenous treatment of Arabidopsis seedlings with lyso-phospholipids for the inducible complementation of lipid mutants. STAR Protocols 2, 100626. PubMed PMC

Platre MP, Noack LC, Doumane M, et al.. 2018. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Developmental Cell 45, 465–480. PubMed

Potocký M, Pleskot R, Pejchar P, Vitale N, Kost B, Žárský V.. 2014. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytologist 203, 483–494. PubMed

Qian T, Li C, Liu F, Xu K, Wan C, Liu Y, Yu H.. 2022. Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition-dependent manner. Traffic 23, 346–356. PubMed

Reszczyńska E, Hanaka A.. 2020. Lipids composition in plant membranes. Cell Biochemistry and Biophysics 78, 401–414. PubMed PMC

Reuter L, Schmidt T, Manishankar P, Throm C, Keicher J, Bock A, Droste-Borel I, Oecking C.. 2021. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nature Communications 12, 6128. PubMed PMC

Roston R, Gao J, Xu C, Benning C.. 2011. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex. The Plant Journal 66, 759–769. PubMed

Ruiz-Lopez N, Pérez-Sancho J, del Valle AE, et al.. 2021. Synaptotagmins at the endoplasmic reticulum–plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. The Plant Cell 33, 2431–2453. PubMed PMC

Saile SC, Ackermann FM, Sunil S, et al.. 2021. Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytologist 232, 2440–2456. PubMed

Šakanovič A, Hodnik V, Anderluh G.. 2019. Surface plasmon resonance for measuring interactions of proteins with lipids and lipid membranes. Methods in Molecular Biology 2003, 53–70. PubMed

Saliba AE, Vonkova I, Ceschia S, et al.. 2014. A quantitative liposome microarray to systematically characterize protein–lipid interactions. Nature Methods 11, 47–50. PubMed

Saliba AE, Vonkova I, Deghou S, Ceschia S, Tischer C, Kugler KG, Bork P, Ellenberg J, Gavin AC.. 2016. A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay. Nature Protocols 11, 1021–1038. PubMed

Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T.. 2022. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytologist 233, 2185–2202. PubMed

Schultz C. 2023. Chemical tools for lipid cell biology. Accounts of Chemical Research 56, 1168–1177. PubMed PMC

Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M.. 2015. The song of lipids and proteins: dynamic lipid–protein interfaces in the regulation of plant cell polarity at different scales. Journal of Experimental Botany 66, 1587–1598. PubMed

Senju Y, Lappalainen P, Zhao H.. 2021. Liposome co-sedimentation and co-flotation assays to study lipid–protein interactions. Methods in Molecular Biology 2251, 195–204. PubMed

Serrano N, Pejchar P, Soukupová H, Hubálek M, Potocký M.. 2022. Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. Frontiers in Plant Science 13, 1028311. PubMed PMC

Shanbhag K, Sharma K, Kamat SS.. 2023. Photoreactive bioorthogonal lipid probes and their applications in mammalian biology. RSC Chemical Biology 4, 37–46. PubMed PMC

Simon MLA, Platre MP, Assil S, Van Wijk R, Chen WY, Chory J, Dreux M, Munnik T, Jaillais Y.. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. The Plant Journal 77, 322–337. PubMed PMC

Simon MLA, Platre MP, Marquès-Bueno MM, Armengot L, Stanislas T, Bayle V, Caillaud MC, Jaillais Y.. 2016. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants 2, 16089. PubMed PMC

Smokvarska M, Bayle V, Maneta-Peyret L, et al.. 2023. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Science Advances 9, eadd4791. PubMed PMC

Stace C, Ktistakis N.. 2006. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochimica et Biophysica Acta 1761, 913–926. PubMed

Stanislas T, Hüser A, Barbosa ICR, Kiefer CS, Brackmann K, Pietra S, Gustavsson A, Zourelidou M, Schwechheimer C, Grebe M.. 2015. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity. Nature Plants 1, 15162. PubMed

Swamy MJ, Sankhala RS, Singh BP.. 2019. Thermodynamic analysis of protein–lipid interactions by isothermal titration calorimetry. Methods in Molecular Biology 2003, 71–89. PubMed

Synek L, Pleskot R, Sekereš J, et al.. 2021. Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proceedings of the National Academy of Sciences, USA 118, e2105287118. PubMed PMC

Syu GD, Dunn J, Zhu H.. 2020. Developments and applications of functional protein microarrays. Molecular & Cellular Proteomics 19, 916–927. PubMed PMC

Tan S, Zhang X, Kong W, Yang X-L, Molnár G, Vondráková Z, Filepová R, Petrášek J, Friml J, Xue H-W.. 2020. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants 6, 556–569. PubMed

Testerink C, Dekker HL, Lim ZY, Johns MK, Holmes AB, De Koster CG, Ktistakis NT, Munnik T.. 2004. Isolation and identification of phosphatidic acid targets from plants. The Plant Journal 39, 527–536. PubMed

Tronchere H, Boal F.. 2017. Liposome flotation assays for phosphoinositide–protein interaction. Bio-Protocol 7, e2169. PubMed PMC

Ufer G, Gertzmann A, Gasulla F, Röhrig H, Bartels D.. 2017. Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. The Plant Journal 92, 276–290. PubMed

Ukawa T, Banno F, Ishikawa T, et al.. 2022. Sphingolipids with 2-hydroxy fatty acids aid in plasma membrane nanodomain organization and oxidative burst. Plant Physiology 189, 839–857. PubMed PMC

van Galen J, Olrichs NK, Schouten A, Serrano RL, Nolte-’t Hoen ENM, Eerland R, Kaloyanova D, Gros P, Helms JB.. 2012. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochimica et Biophysica Acta 1818, 2175–2183. PubMed

van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T.. 2007. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. The Plant Journal 52, 1014–1026. PubMed

Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ. Jr. 2009. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. The Plant Journal 57, 356–372. PubMed

Vermeer JEM, Van Leeuwen W, Tobeña-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TWJ, Munnik T.. 2006. Visualization of PtdIns3P dynamics in living plant cells. The Plant Journal 47, 687–700. PubMed

Vermeer JEM, Van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TWJ, Munnik T.. 2017. In vivo imaging of diacylglycerol at the cytoplasmic leaflet of plant membranes. Plant and Cell Physiology 58, 1196–1207. PubMed PMC

Vogel K, Bläske T, Nagel MK, et al.. 2022. Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking. Nature Communications 13, e2169. PubMed PMC

Vonkova I, Saliba AE, Deghou S, et al.. 2015. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Reports 12, 1519–1530. PubMed

Wallner J, Lhota G, Jeschek D, Mader A, Vorauer-Uhl K.. 2013. Application of bio-layer interferometry for the analysis of protein/liposome interactions. Journal of Pharmaceutical and Biomedical Analysis 72, 150–154. PubMed

Wallner J, Lhota G, Schosserer M, Vorauer-Uhl K.. 2017. An approach for liposome immobilization using sterically stabilized micelles (SSMs) as a precursor for bio-layer interferometry-based interaction studies. Colloids and Surfaces B 154, 186–194. PubMed

Wang Q, Jiang M, Isupov MN, et al.. 2020. The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. The Plant Journal 103, 1215–1232. PubMed

Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule JJ, Moreau P.. 2022. Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? Journal of Experimental Botany 73, 1327–1343. PubMed

Yamaji-Hasegawa A, Murate M, Inaba T, Dohmae N, Sato M, Fujimori F, Sako Y, Greimel P, Kobayashi T.. 2022. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cellular and Molecular Life Sciences 79, 324. PubMed PMC

Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I.. 2011. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. The Plant Journal 67, 648–661. PubMed

Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y.. 2022a. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. The Plant Cell 34, 3718–3736. PubMed PMC

Yang Y, Zhao Y, Zheng W, et al.. 2022b. Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis. The Plant Cell 34, 477–494. PubMed PMC

Yperman K, Wang J, Eeckhout D, et al.. 2021. Molecular architecture of the endocytic TPLATE complex. Science Advances 7, eabe7999. PubMed PMC

Yu Y, Xuan Y, Bian X, et al.. 2020. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na+ homeostasis and salt tolerance by activating plasma membrane Na+/H+ antiport activity in sweet potato roots. Horticulture Research 7, 131. PubMed PMC

Żelasko J, Czogalla A.. 2022. Selectivity of mTOR–phosphatidic acid interactions is driven by acyl chain structure and cholesterol. Cells 11, 119. PubMed PMC

Zewe JP, Miller AM, Sangappa S, Wills RC, Goulden BD, Hammond GRV.. 2020. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. Journal of Cell Biology 219, e201906127. PubMed PMC

Zhu H, Bilgin M, Bangham R, et al.. 2001. Global analysis of protein activities using proteome chips. Science 293, 2101–2105. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace