Exploring lipid-protein interactions in plant membranes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GA22-35916S
Czech Science Foundation
PubMed
38708855
PubMed Central
PMC11389841
DOI
10.1093/jxb/erae199
PII: 7665353
Knihovny.cz E-zdroje
- Klíčová slova
- Genetically encoded biosensors, lipid manipulation, membrane lipid imaging, microscopy, peripheral membrane proteins, protein–lipid interactions,
- MeSH
- buněčná membrána * metabolismus MeSH
- membránové lipidy metabolismus MeSH
- membránové proteiny metabolismus MeSH
- rostlinné proteiny * metabolismus MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- membránové lipidy MeSH
- membránové proteiny MeSH
- rostlinné proteiny * MeSH
Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Alvarez-Venegas R, Sadder M, Hlavacka A, et al.. 2006. The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proceedings of the National Academy of Sciences, USA 103, 6049–6054. PubMed PMC
Backues SK, Bednarek SY.. 2010. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes. Biochemical and Biophysical Research Communications 393, 734–739. PubMed PMC
Bahammou D, Recorbet G, Cassim AM, Robert F, Balliau T, Van Delft P, Haddad Y, Mongrand S, Fouillen L, Simon-Plas F.. 2024. A combined lipidomic and proteomic profiling of Arabidopsis thaliana plasma membrane. The Plant Journal doi: 10.1111/tpj.16810 PubMed DOI
Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 93, 1019–1137. PubMed PMC
Barajas-Lopez JD, Tiwari A, Zarza X, Shaw MW, Pascual J, Punkkinen M, Bakowska JC, Munnik T, Fujii H.. 2021. EARLY RESPONSE TO DEHYDRATION 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant and Cell Physiology 62, 80–91. PubMed
Barbosa ICR, Shikata H, Zourelidou M, Heilmann M, Heilmann I, Schwechheimer C.. 2016. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development 143, 4687–4700. PubMed
Benavente JL, Siliqi D, Infantes L, Lagartera L, Mills A, Gago F, Ruiz-López N, Botella MA, Sánchez-Barrena MJ, Albert A.. 2021. The structure and flexibility analysis of the Arabidopsis synaptotagmin 1 reveal the basis of its regulation at membrane contact sites. Life Science Alliance 4, e202101152. PubMed PMC
Birchenough HL, Jowitt TA.. 2021. Quartz crystal microbalance with dissipation monitoring (QCM-D): preparing functionalized lipid layers for the study of complex protein–ligand interactions. Methods in Molecular Biology 2263, 183–197. PubMed
Brault ML, Petit JD, Immel F, et al.. 2019. Multiple C2 domains and transmembrane region proteins (mctps) tether membranes at plasmodesmata. EMBO Reports 20, e47182. PubMed PMC
Caillaud MC. 2019. Anionic lipids: a pipeline connecting key players of plant cell division. Frontiers in Plant Science 10, 419. PubMed PMC
Cao C, Wang P, Song H, Jing W, Shen L, Zhang Q, Zhang W.. 2017. Phosphatidic acid binds to and regulates guanine nucleotide exchange factor 8 (GEF8) activity in Arabidopsis. Functional Plant Biology 44, 1029–1038. PubMed
Colin LA, Jaillais Y.. 2020. Phospholipids across scales: lipid patterns and plant development. Current Opinion in Plant Biology 53, 1–9. PubMed
Deeken R, Saupe S, Klinkenberg J, Riedel M, Leide J, Hedrich R, Mueller TD.. 2016. The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of Arabidopsis thaliana crown galls. Plant Physiology 172, 1911–1927. PubMed PMC
de Jong F, Munnik T.. 2021. Attracted to membranes: lipid-binding domains in plants. Plant Physiology 185, 707–723. PubMed PMC
Doumane M, Lebecq A, Colin L, et al.. 2021. Inducible depletion of PI(4,5)P2 by the synthetic iDePP system in Arabidopsis. Nature Plants 7, 587–597. PubMed PMC
Fan R, Zhao F, Gong Z, et al.. 2023. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nature Communications 14, 194. PubMed PMC
Farley S, Laguerre A, Schultz C.. 2021. Caged lipids for subcellular manipulation. Current Opinion in Chemical Biology 65, 42–48. PubMed PMC
Furt F, Simon-Plas F, Mongrand S.. 2011. Lipids of the plant plasma membrane. In: Murphy A, Schulz B, Peer W, eds. The plant plasma membrane. Berlin, Heidelberg: Springer, 3–30.
Gao W, Li HY, Xiao S, Chye ML.. 2010. Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. The Plant Journal 62, 989–1003. PubMed
Ge J, Du S, Yao SQ.. 2022. Bifunctional lipid-derived affinity-based probes (AfBPs) for analysis of lipid–protein interactome. Accounts of Chemical Research 55, 3663–3674. PubMed
Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M.. 2017. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. The Plant Journal 92, 862–878. PubMed
Goldy C, Caillaud MC.. 2023. Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. Current Opinion in Plant Biology 73, 102365. PubMed
Gozani O, Karuman P, Jones DR, et al.. 2003. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111. PubMed
Gronnier J, Crowet JM, Habenstein B, et al.. 2017. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 6, e26404. PubMed PMC
Guo L, Mishra G, Taylor K, Wang X.. 2011. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. Journal of Biological Chemistry 286, 13336–13345. PubMed PMC
Hammond GRV, Takasuga S, Sasaki T, Balla T.. 2015. The ML1Nx2 phosphatidylinositol 3,5-bisphosphate probe shows poor selectivity in cells. PLoS One 10, e0139957. PubMed PMC
Hammond GRV, Ricci MMC, Weckerly CC, Wills RC.. 2022. An update on genetically encoded lipid biosensors. Molecular Biology of the Cell 33, tp2. PubMed PMC
Han X, Shi Y, Liu G, Guo Y, Yang Y.. 2018. Activation of ROP6 GTPase by phosphatidylglycerol in Arabidopsis. Frontiers in Plant Science 9, 347. PubMed PMC
Han X, Yang Y, Zhao F, Zhang T, Yu X.. 2020. An improved protein lipid overlay assay for studying lipid–protein interactions. Plant Methods 16, 33. PubMed PMC
Heilmann M, Heilmann I.. 2022. Regulators regulated: different layers of control for plasma membrane phosphoinositides in plants. Current Opinion in Plant Biology 67, 102218. PubMed
Herianto S, Chen CS, Zhu H.. 2019. Protein microarrays and liposome: a method for studying lipid–protein interactions. Methods in Molecular Biology 2003, 191–199. PubMed
Herianto S, Rathod J, Shah P, Chen YZ, Wu WS, Liang B, Chen CS.. 2021. Systematic analysis of phosphatidylinositol-5-phosphate-interacting proteins using yeast proteome microarrays. Analytical Chemistry 93, 868–877. PubMed
Herianto S, Subramani B, Chen BR, Chen CS.. 2022. Recent advances in liposome development for studying protein–lipid interactions. Critical Reviews in Biotechnology 44, 1–14. PubMed
Hirano T, Konno H, Takeda S, Dolan L, Kato M, Aoyama T, Higaki T, Takigawa-Imamura H, Sato MH.. 2018. PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis. Nature Plants 4, 888–897. PubMed
Hirano T, Stecker K, Munnik T, Xu H, Sato MH.. 2017. Visualization of phosphatidylinositol 3,5-bisphosphate dynamics by a tandem ML1N-based fluorescent protein probe in Arabidopsis. Plant and Cell Physiology 58, 1185–1195. PubMed PMC
Hofbauer HF, Gecht M, Fischer SC, Seybert A, Frangakis AS, Stelzer EHK, Covino R, Hummer G, Ernst R.. 2018. The molecular recognition of phosphatidic acid by an amphipathic helix in Opi1. Journal of Cell Biology 217, 3109–3126. PubMed PMC
Hundertmark M, Dimova R, Lengefeld J, Seckler R, Hincha DK.. 2011. The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Biochimica et Biophysica Acta 1808, 446–453. PubMed
Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M.. 2019. CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1. Plant Physiology 180, 2004–2021. PubMed PMC
Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I.. 2011. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. The Plant Journal 65, 453–468. PubMed
Iswanto ABB, Shon JC, Liu KH, Vu MH, Kumar R, Kim JY.. 2020. Sphingolipids modulate secretion of glycosylphosphatidylinositol-anchored plasmodesmata proteins and callose deposition. Plant Physiology 184, 407–420. PubMed PMC
Ito Y, Esnay N, Fougère L, Platre MP, Cordelières F, Jaillais Y, Boutté Y.. 2021a. Inhibition of very long chain fatty acids synthesis mediates PI3P homeostasis at endosomal compartments. International Journal of Molecular Sciences 22, 8450. PubMed PMC
Ito Y, Esnay N, Platre MP, et al.. 2021b. Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network. Nature Communications 12, 4267. PubMed PMC
Jiménez-López C, Nadler A.. 2023. Caged lipid probes for controlling lipid levels on subcellular scales. Current Opinion in Chemical Biology 72, 102234. PubMed
Jose GP, Gopan S, Bhattacharyya S, Pucadyil TJ.. 2020. A facile, sensitive and quantitative membrane-binding assay for proteins. Traffic 21, 297–305. PubMed
Jose GP, Pucadyil TJ.. 2020. PLiMAP: proximity-based labeling of membrane-associated proteins. Current Protocols in Protein Science 101, e110. PubMed
Julkowska MM, Rankenberg JM, Testerink C.. 2013. Liposome-binding assays to assess specificity and affinity of phospholipid–protein interactions. Methods in Molecular Biology 1009, 261–271. PubMed
Kalachova T, Škrabálková E, Pateyron S, et al.. 2022. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiology 190, 1978–1996. PubMed PMC
Kassas N, Tanguy E, Thahouly T, Fouillen L, Heintz D, Chasserot-Golaz S, Bader MF, Grant NJ, Vitale N.. 2017. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. Journal of Biological Chemistry 292, 4266–4279. PubMed PMC
Kastner C, Wagner VC, Fratini M, Dobritzsch D, Fuszard M, Heilmann M, Heilmann I.. 2022. The pollen-specific class VIII-myosin ATM2 from Arabidopsis thaliana associates with the plasma membrane through a polybasic region binding anionic phospholipids. Biochimie 203, 65–76. PubMed
Kelly AA, Kalisch B, Hölzl G, Schulze S, Thiele J, Melzer M, Roston RL, Benning C, Dörmann P.. 2016. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 113, 10714–10719. PubMed PMC
Kim SC, Wang X.. 2020. Phosphatidic acid: an emerging versatile class of cellular mediators. Essays in Biochemistry 64, 533–546. PubMed
Kim SC, Nusinow DA, Sorkin ML, Pruneda-Paz J, Wang X.. 2019. Interaction and regulation between lipid mediator phosphatidic acid and circadian clock regulators. The Plant Cell 31, 399–416. PubMed PMC
Kubátová Z, Pejchar P, Potocký M, Sekereš J, Žárský V, Kulich I.. 2019. Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. International Journal of Molecular Sciences 20, 3803. PubMed PMC
Kulich I, Schmid J, Teplova A, Qi L, Friml J.. 2024. Rapid redirection of auxin fluxes during root gravitropism by translocation of NGR proteins driving polarization of PIN-activating kinases. eLife 12, RP91523. PubMed PMC
Lee J, Yamaoka Y, Kong F, Cagnon C, Beyly-Adriano A, Jang S, Gao P, Kang B-H, Li-Beisson Y, Lee Y.. 2020. The phosphatidylethanolamine-binding protein DTH1 mediates degradation of lipid droplets in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, USA 117, 23131–23139. PubMed PMC
Li J, Wang Z, Chang Z, He H, Tang X, Ma L, Deng XW.. 2021. A functional characterization of TaMs1 orthologs in Poaceae plants. The Crop Journal 9, 1291–1300.
Li W, Song T, Wallrad L, Kudla J, Wang X, Zhang W.. 2019. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants 5, 1012–1021. PubMed
Li X, Wang X, Zhang X, Zhao M, Tsang WL, Zhang Y, Yau RGW, Weisman LS, Xu H.. 2013. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proceedings of the National Academy of Sciences, USA 110, 21165–21170. PubMed PMC
Linster E, Layer D, Bienvenut WV, et al.. 2020. The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. New Phytologist 228, 554–569. PubMed
Liu C, Mentzelopoulou A, Papagavriil F, et al.. 2023. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis. PLoS Biology 21, e3002305. PubMed PMC
Liu NJ, Zhang T, Liu ZH, et al.. 2020. Phytosphinganine affects plasmodesmata permeability via facilitating PDLP5-stimulated callose accumulation in Arabidopsis. Molecular Plant 13, 128–143. PubMed
Liu X, An J, Wang L, et al.. 2022. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division. The Plant Cell 34, 419–432. PubMed PMC
Maekawa M, Fairn GD.. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. Journal of Cell Science 128, 1422–1433. PubMed
Mallery EL, Yanagisawa M, Zhang C, Lee Y, Robles LM, Alonso JM, Szymanski DB.. 2022. Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. Journal of Cell Science 135, jcs259825. PubMed
Manifava M, Thuring JW, Lim ZY, Packman L, Holmes AB, Ktistakis NT.. 2001. Differential binding of traffic-related proteins to phosphatidic acid- or phosphatidylinositol (4,5)-bisphosphate-coupled affinity reagents. Journal of Biological Chemistry 276, 8987–8994. PubMed
Marković V, Jaillais Y.. 2022. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. New Phytologist 235, 867–874. PubMed
McLoughlin F, Arisz SA, Dekker HL, Kramer G, De Koster CG, Haring MA, Munnik T, Testerink C.. 2013. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. The Biochemical Journal 450, 573–581. PubMed
Meijer HJG, Munnik T.. 2003. Phospholipid-based signaling in plants. Annual Review of Plant Biology 54, 265–306. PubMed
Miao R, Lung SC, Li X, Li XD, Chye ML.. 2019. Thermodynamic insights into an interaction between ACYL-CoA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. Journal of Biological Chemistry 294, 6214–6226. PubMed PMC
Mishra G, Zhang W, Deng F, Zhao J, Wang X.. 2006. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312, 264–266. PubMed
Nakamura Y. 2017. Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends in Plant Science 22, 1027–1040. PubMed
Neubergerová M, Pleskot R.. 2024. Plant protein–lipid interfaces studied by molecular dynamics simulations. Journal of Experimental Botany 75, 5237–5250. doi: 10.1093/jxb/erae228 PubMed DOI
Nielsen SB, Otzen DE.. 2019. Quartz crystal microbalances as tools for probing protein–membrane interactions. Methods in Molecular Biology 2003, 31–52. PubMed
Niphakis MJ, Lum KM, Cognetta AB, et al.. 2015. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680. PubMed PMC
Noack LC, Pejchar P, Sekereš J, Jaillais Y, Potocký M.. 2019. Transient gene expression as a tool to monitor and manipulate the levels of acidic phospholipids in plant cells. Methods in Molecular Biology 1992, 189–199. PubMed
Pandit S, Dalal V, Mishra G.. 2018. Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Plant Physiology and Biochemistry 128, 178–184. PubMed
Pandit S, Goel R, Mishra G.. 2022. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. Plant Physiology and Biochemistry 185, 344–355. PubMed
Pejchar P, Sekereš J, Novotný O, Žárský V, Potocký M.. 2020. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. The Plant Journal 103, 212–226. PubMed
Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T.. 2020. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. Journal of Cell Biology 219, e201906130. PubMed PMC
Pendaries C, Tronchère H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B.. 2006. PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. The EMBO Journal 25, 1024–1034. PubMed PMC
Platre MP, Bayle V, Armengot L, et al.. 2019. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364, 57–62. PubMed
Platre MP, Jaillais Y.. 2021. Exogenous treatment of Arabidopsis seedlings with lyso-phospholipids for the inducible complementation of lipid mutants. STAR Protocols 2, 100626. PubMed PMC
Platre MP, Noack LC, Doumane M, et al.. 2018. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Developmental Cell 45, 465–480. PubMed
Potocký M, Pleskot R, Pejchar P, Vitale N, Kost B, Žárský V.. 2014. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytologist 203, 483–494. PubMed
Qian T, Li C, Liu F, Xu K, Wan C, Liu Y, Yu H.. 2022. Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition-dependent manner. Traffic 23, 346–356. PubMed
Reszczyńska E, Hanaka A.. 2020. Lipids composition in plant membranes. Cell Biochemistry and Biophysics 78, 401–414. PubMed PMC
Reuter L, Schmidt T, Manishankar P, Throm C, Keicher J, Bock A, Droste-Borel I, Oecking C.. 2021. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nature Communications 12, 6128. PubMed PMC
Roston R, Gao J, Xu C, Benning C.. 2011. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex. The Plant Journal 66, 759–769. PubMed
Ruiz-Lopez N, Pérez-Sancho J, del Valle AE, et al.. 2021. Synaptotagmins at the endoplasmic reticulum–plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. The Plant Cell 33, 2431–2453. PubMed PMC
Saile SC, Ackermann FM, Sunil S, et al.. 2021. Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytologist 232, 2440–2456. PubMed
Šakanovič A, Hodnik V, Anderluh G.. 2019. Surface plasmon resonance for measuring interactions of proteins with lipids and lipid membranes. Methods in Molecular Biology 2003, 53–70. PubMed
Saliba AE, Vonkova I, Ceschia S, et al.. 2014. A quantitative liposome microarray to systematically characterize protein–lipid interactions. Nature Methods 11, 47–50. PubMed
Saliba AE, Vonkova I, Deghou S, Ceschia S, Tischer C, Kugler KG, Bork P, Ellenberg J, Gavin AC.. 2016. A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay. Nature Protocols 11, 1021–1038. PubMed
Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T.. 2022. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytologist 233, 2185–2202. PubMed
Schultz C. 2023. Chemical tools for lipid cell biology. Accounts of Chemical Research 56, 1168–1177. PubMed PMC
Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M.. 2015. The song of lipids and proteins: dynamic lipid–protein interfaces in the regulation of plant cell polarity at different scales. Journal of Experimental Botany 66, 1587–1598. PubMed
Senju Y, Lappalainen P, Zhao H.. 2021. Liposome co-sedimentation and co-flotation assays to study lipid–protein interactions. Methods in Molecular Biology 2251, 195–204. PubMed
Serrano N, Pejchar P, Soukupová H, Hubálek M, Potocký M.. 2022. Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. Frontiers in Plant Science 13, 1028311. PubMed PMC
Shanbhag K, Sharma K, Kamat SS.. 2023. Photoreactive bioorthogonal lipid probes and their applications in mammalian biology. RSC Chemical Biology 4, 37–46. PubMed PMC
Simon MLA, Platre MP, Assil S, Van Wijk R, Chen WY, Chory J, Dreux M, Munnik T, Jaillais Y.. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. The Plant Journal 77, 322–337. PubMed PMC
Simon MLA, Platre MP, Marquès-Bueno MM, Armengot L, Stanislas T, Bayle V, Caillaud MC, Jaillais Y.. 2016. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants 2, 16089. PubMed PMC
Smokvarska M, Bayle V, Maneta-Peyret L, et al.. 2023. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Science Advances 9, eadd4791. PubMed PMC
Stace C, Ktistakis N.. 2006. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochimica et Biophysica Acta 1761, 913–926. PubMed
Stanislas T, Hüser A, Barbosa ICR, Kiefer CS, Brackmann K, Pietra S, Gustavsson A, Zourelidou M, Schwechheimer C, Grebe M.. 2015. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity. Nature Plants 1, 15162. PubMed
Swamy MJ, Sankhala RS, Singh BP.. 2019. Thermodynamic analysis of protein–lipid interactions by isothermal titration calorimetry. Methods in Molecular Biology 2003, 71–89. PubMed
Synek L, Pleskot R, Sekereš J, et al.. 2021. Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proceedings of the National Academy of Sciences, USA 118, e2105287118. PubMed PMC
Syu GD, Dunn J, Zhu H.. 2020. Developments and applications of functional protein microarrays. Molecular & Cellular Proteomics 19, 916–927. PubMed PMC
Tan S, Zhang X, Kong W, Yang X-L, Molnár G, Vondráková Z, Filepová R, Petrášek J, Friml J, Xue H-W.. 2020. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants 6, 556–569. PubMed
Testerink C, Dekker HL, Lim ZY, Johns MK, Holmes AB, De Koster CG, Ktistakis NT, Munnik T.. 2004. Isolation and identification of phosphatidic acid targets from plants. The Plant Journal 39, 527–536. PubMed
Tronchere H, Boal F.. 2017. Liposome flotation assays for phosphoinositide–protein interaction. Bio-Protocol 7, e2169. PubMed PMC
Ufer G, Gertzmann A, Gasulla F, Röhrig H, Bartels D.. 2017. Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. The Plant Journal 92, 276–290. PubMed
Ukawa T, Banno F, Ishikawa T, et al.. 2022. Sphingolipids with 2-hydroxy fatty acids aid in plasma membrane nanodomain organization and oxidative burst. Plant Physiology 189, 839–857. PubMed PMC
van Galen J, Olrichs NK, Schouten A, Serrano RL, Nolte-’t Hoen ENM, Eerland R, Kaloyanova D, Gros P, Helms JB.. 2012. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochimica et Biophysica Acta 1818, 2175–2183. PubMed
van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T.. 2007. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. The Plant Journal 52, 1014–1026. PubMed
Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ. Jr. 2009. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. The Plant Journal 57, 356–372. PubMed
Vermeer JEM, Van Leeuwen W, Tobeña-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TWJ, Munnik T.. 2006. Visualization of PtdIns3P dynamics in living plant cells. The Plant Journal 47, 687–700. PubMed
Vermeer JEM, Van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TWJ, Munnik T.. 2017. In vivo imaging of diacylglycerol at the cytoplasmic leaflet of plant membranes. Plant and Cell Physiology 58, 1196–1207. PubMed PMC
Vogel K, Bläske T, Nagel MK, et al.. 2022. Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking. Nature Communications 13, e2169. PubMed PMC
Vonkova I, Saliba AE, Deghou S, et al.. 2015. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Reports 12, 1519–1530. PubMed
Wallner J, Lhota G, Jeschek D, Mader A, Vorauer-Uhl K.. 2013. Application of bio-layer interferometry for the analysis of protein/liposome interactions. Journal of Pharmaceutical and Biomedical Analysis 72, 150–154. PubMed
Wallner J, Lhota G, Schosserer M, Vorauer-Uhl K.. 2017. An approach for liposome immobilization using sterically stabilized micelles (SSMs) as a precursor for bio-layer interferometry-based interaction studies. Colloids and Surfaces B 154, 186–194. PubMed
Wang Q, Jiang M, Isupov MN, et al.. 2020. The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. The Plant Journal 103, 1215–1232. PubMed
Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule JJ, Moreau P.. 2022. Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? Journal of Experimental Botany 73, 1327–1343. PubMed
Yamaji-Hasegawa A, Murate M, Inaba T, Dohmae N, Sato M, Fujimori F, Sako Y, Greimel P, Kobayashi T.. 2022. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cellular and Molecular Life Sciences 79, 324. PubMed PMC
Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I.. 2011. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. The Plant Journal 67, 648–661. PubMed
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y.. 2022a. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. The Plant Cell 34, 3718–3736. PubMed PMC
Yang Y, Zhao Y, Zheng W, et al.. 2022b. Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis. The Plant Cell 34, 477–494. PubMed PMC
Yperman K, Wang J, Eeckhout D, et al.. 2021. Molecular architecture of the endocytic TPLATE complex. Science Advances 7, eabe7999. PubMed PMC
Yu Y, Xuan Y, Bian X, et al.. 2020. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na+ homeostasis and salt tolerance by activating plasma membrane Na+/H+ antiport activity in sweet potato roots. Horticulture Research 7, 131. PubMed PMC
Żelasko J, Czogalla A.. 2022. Selectivity of mTOR–phosphatidic acid interactions is driven by acyl chain structure and cholesterol. Cells 11, 119. PubMed PMC
Zewe JP, Miller AM, Sangappa S, Wills RC, Goulden BD, Hammond GRV.. 2020. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. Journal of Cell Biology 219, e201906127. PubMed PMC
Zhu H, Bilgin M, Bangham R, et al.. 2001. Global analysis of protein activities using proteome chips. Science 293, 2101–2105. PubMed