Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth

. 2022 ; 13 () : 1028311. [epub] 20221108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36426152

Pollen germination and subsequent pollen tube elongation are essential for successful land plant reproduction. These processes are achieved through well-documented activation of membrane trafficking and cell metabolism. Despite this, our knowledge of the dynamics of cellular phospholipids remains scarce. Here we present the turnover of the glycerolipid composition during the establishment of cell polarity and elongation processes in tobacco pollen and show the lipid composition of pollen plasma membrane-enriched fraction for the first time. To achieve this, we have combined several techniques, such as lipidomics, plasma membrane isolation, and live-cell microscopy, and performed a study with different time points during the pollen germination and pollen tube growth. Our results showed that tobacco pollen tubes undergo substantial changes in their whole-cell lipid composition during the pollen germination and growth, finding differences in most of the glycerolipids analyzed. Notably, while lysophospholipid levels decrease during germination and growth, phosphatidic acid increases significantly at cell polarity establishment and continues with similar abundance in cell elongation. We corroborated these findings by measuring several phospholipase activities in situ. We also observed that lysophospholipids and phosphatidic acid are more abundant in the plasma membrane-enriched fraction than that in the whole cell. Our results support the important role for the phosphatidic acid in the establishment and maintenance of cellular polarity in tobacco pollen tubes and indicate that plasma membrane lysophospholipids may be involved in pollen germination.

Zobrazit více v PubMed

Angkawijaya A. E., Nguyen V. C., Gunawan F., Nakamura Y. (2020). A pair of arabidopsis diacylglycerol kinases essential for gametogenesis and ER phospholipid metabolism in leaves and flowers. Plant Cell. 32, 2602–2620. doi: 10.1105/tpc.20.00251 PubMed DOI PMC

Antonny B., Vanni S., Shindou H., Ferreira T. (2015). From zero to six double bonds: phospholipid unsaturation and organelle function. Trends Cell Biol. 25, 427–436. doi: 10.1016/j.tcb.2015.03.004 PubMed DOI

Bashir M. E. H., Lui J. H., Palnivelu R., Naclerio R. M., Preuss D. (2013). Pollen lipidomics: Lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS One 8, e57566. doi: 10.1371/journal.pone.0057566 PubMed DOI PMC

Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (8), 911–917. doi: 10.1139/o59-099 PubMed DOI

Botté C. Y., Deligny M., Roccia A., Bonneau A.-L., Saïdani N., Hardré H., et al. . (2011). Chemical inhibitors of monogalactosyldiacylglycerol synthases in arabidopsis thaliana. Nat. Chem. Biol. 7, 834–842. doi: 10.1038/nchembio.658 PubMed DOI

Brown W. J., Chambers K., Doody A. (2003). Phospholipase A2 (PLA2) enzymes in membrane trafficking:mediators of membrane shape and function. Traffic 4, 214–221. doi: 10.1034/j.1600-0854.2003.00078.x PubMed DOI

Cacas J.-L., Buré C., Grosjean K., Gerbeau-Pissot P., Lherminier J., Rombouts Y., et al. . (2016). Revisiting plant plasma membrane lipids in tobacco: A focus on sphingolipids. Plant Physiol. 170, 367–384. doi: 10.1104/pp.15.00564 PubMed DOI PMC

Cassim A. M., Gouguet P., Gronnier J., Laurent N., Germain V., Grison M., et al. . (2018). Lant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res 73, 1–27. doi: 10.1016/j.plipres.2018.11.002 PubMed DOI

Chen C. Y., Wong E. I., Vidali L., Estavillo A., Hepler P. K., Wu H. M., et al. . (2002). The regulation of actin organization by actin-depolymerizing factor in elongation pollen tubes. Plant Cell 14, 2175–2190. doi: 10.1105/tpc.003038 PubMed DOI PMC

Choukroun G. J., Marshansky V., Gustafson C. E., McKee M., Hajjar R. J., Rosenzweig A., et al. . (2000). Cytosolic phospholipase a (2) regulates golgi structure and modulates intracellular trafficking of membrane proteins. J. Clin. Invest. 106, 983–993. doi: 10.1172/JCI8914 PubMed DOI PMC

Colin L. A., Jaillais Y. (2020). Phospholipids across scales: lipid patterns and plant development. Curr. Opin. Plant Biol. 53, 1–9. doi: 10.1016/j.pbi.2019.08.007 PubMed DOI

Conze L. L., Berlin S., Le Bail A., Kost B. (2017). Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes . BMC Genomics 18, 581. doi: 10.1186/s12864-017-3972-3 PubMed DOI PMC

Dawaliby R., Trubbia C., Delporte C., Noyon C., Ruysschaert J.-M., Van Antwerpen P., et al. . (2016). Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells*. J. Biol. Chem. 291, 3658–3667. doi: 10.1074/jbc.M115.706523 PubMed DOI PMC

Devaiah S. P., Roth M. R., Baughman E., Li M., Tamura P., Jeannotte R., et al. . (2006). Quantitative profiling of polar glycerolipid species from organs of wild-type arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67, 1907–1924. doi: 10.1016/j.phytochem.2006.06.005 PubMed DOI

Dias F. V., Serrazina S., Vitorino M., Marchese D., Heilmann I., Godinho M., et al. . (2019). A role for diacylglycerol kinase 4 in signalling crosstalk during arabidopsis pollen tube growth. New Phytol. 222, 1434–1446. doi: 10.1111/nph.15674 PubMed DOI

Djanaguiraman M., Prasad P. V. V., Schapaugh W. T. (2013). High day- or nighttime temperature alters leaf assimilation, reproductive success, and phosphatidic acid of pollen grain in soybean [Glycine max (L.) merr.]. Crop Sci. 53, 1594–1604. doi: 10.2135/cropsci2012.07.0441 DOI

Dorne A. J., Kappler R., Kristen U., Heinz E. (1988). Lipid metabolism during germination of tobacco pollen. Phytochemistry 27 (7), 2027–2031. doi: 10.1016/0031-9422(88)80090-6 DOI

Erde J., Loo R. R., Loo J. A. (2014). Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J. Proteome Res. 13 (4), 1885–1895. doi: 10.1021/pr4010019 PubMed DOI PMC

Grobei M.A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., et al. (2009). Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19 (10), 1786–800. doi: 10.1101/gr.089060.108 PubMed DOI PMC

Hafidh S., Honys D. (2021). Reproduction multitasking: The male gametophyte. Annu. Rev. Plant Biol. 72, 581–614. doi: 10.1146/annurev-arplant-080620-021907 PubMed DOI

Han B., Yang N., Pu H., Wang T. (2018). Quantitative proteomics and cytology of rice pollen sterol-rich membrane domains reveals pre-established cell polarity cues in mature pollen. J. Proteome Res. 17, 1532–1546. doi: 10.1021/acs.jproteome.7b00852 PubMed DOI

Heilmann M., Heilmann I. (2022). Regulators regulated: Different layers of control for plasma membrane phosphoinositides in plants. Curr. Opin. Plant Biol. 67, 102218. doi: 10.1016/j.pbi.2022.102218 PubMed DOI

Hepler P. K., Vidali L., Cheung A. Y. (2001). Polarized cell growth in higher plants. Annu. Rev. Cell. Dev. Biol. 17, 159–187. doi: 10.1146/annurev.cellbio.17.1.159 PubMed DOI

Hernández M. L., Lima-Cabello E., Alché J., de D., Martínez-Rivas J. M., Castro A. J. (2020). Lipid composition and associated gene expression patterns during pollen germination and pollen tube growth in olive (Olea europaea l.). Plant Cell Physiol. 61, 1348–1364. doi: 10.1093/pcp/pcaa063 PubMed DOI PMC

Higashiyama T., Takeuchi H. (2015). The mechanism and key molecules involved in pollen tube guidance. Annu. Rev. Plant Biol. 66, 393–413. doi: 10.1146/annurev-arplant-043014-115635 PubMed DOI

Horn P. J., Chapman K. D. (2012). Lipidomics in tissues, cells and subcellular compartments. Plant J. 70, 69–80. doi: 10.1111/j.1365-313X.2011.04868.x PubMed DOI

Horsch R. B., Fry J. E., Hoffmann N. L., Wallroth M., Eichholtz D., Rogers S. G., et al. . (1985). A simple and general method for transferring genes into plants. Science 227, 1229–1231. doi: 10.1126/science.227.4691.1229 PubMed DOI

Ischebeck T. (2016). “Lipid composition of arabidopsis thaliana pollen,” in Encyclopedia of lipidomics. Ed. Wenk M. (Dordrecht: Springer; ). doi: 10.1007/978-94-007-7864-1_122-1 DOI

Jenkins G. M., Frohman M. A. (2005). Phospholipase d: a lipid centric review. Cell. Mol. Life Sci. 62, 2305–2316. doi: 10.1007/s00018-005-5195-z PubMed DOI PMC

Kalachova T., Škrabálková E., Pateyron S., Soubigou-Taconnat L., Djafi N., Collin S., et al. . (2022). DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in arabidopsis. Plant Physiol., kiac354. doi: 10.1093/plphys/kiac354 PubMed DOI PMC

Keilhauer E. C., Hein M. Y., Mann M. (2015). Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol. Cell Proteomics 14, 120–135. doi: 10.1074/mcp.M114.041012 PubMed DOI PMC

Kerwin J. L., Tuininga A. R., Ericsson L. H. (1994). Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res. 35, 1102–1114. PubMed

Kim H. U., Li Y., Huang A. H. C. (2005). Ubiquitous and endoplasmic reticulum–located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not Male gametophyte development in arabidopsis. Plant Cell. 17, 1073–1089. doi: 10.1105/tpc.104.030403 PubMed DOI PMC

Kim H. J., Ok S. H., Bahn S. C., Jang J., Oh S. A., Park S. K., et al. . (2011). Endoplasmic reticulum– and golgi-localized phospholipase A2 plays critical roles in arabidopsis pollen development and germination. Plant Cell. 23, 94–110. doi: 10.1105/tpc.110.074799 PubMed DOI PMC

Kim Y.-J., Zhang D., Jung K.-H. (2019). Molecular basis of pollen germination in cereals. Trends Plant Sci. 24, 1126–36 doi: 10.1016/j.tplants.2019.08.005 PubMed DOI

Kooijman E. E., Tieleman D. P., Testerink C., Munnik T., Rijkers D. T. S., Burger K. N. J., et al. . (2007). An Electrostatic/Hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 282, 11356–11364. doi: 10.1074/jbc.M609737200 PubMed DOI

Krawczyk H. E., Rotsch A. H., Herrfurth C., Scholz P., Shomroni O., Salinas-Riester G., et al. . (2022). Heat stress leads to rapid lipid remodelling and transcriptional adaptations in nicotiana tabacum pollen tubes. Plant Physiol. 189, 490–515. doi: 10.1093/plphys/kiac127 PubMed DOI PMC

Langerova H., Lubyova B., Zabransky A., Hubalek M., Glendova K., Aillot L., et al. . (2020). Hepatitis b core protein is post-translationally modified through K29-linked ubiquitination. Cells 9, 2547. doi: 10.3390/cells9122547 PubMed DOI PMC

Li Z., Agellon L. B., Allen T. M., Umeda M., Jewell L., Mason A., et al. . (2006). The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 3, 321–331. doi: 10.1016/j.cmet.2006.03.007 PubMed DOI

Lin W. J., Shen P. C., Liu H. C., Cho Y. C., Hsu M. K., Lin I. C., et al. . (2021). LipidSig: a web-based tool for lipidomic data analysis. Nucleic Acid Res. 49 (W1), W336–W345. doi: 10.1093/nar/gkab419 PubMed DOI PMC

Mascarenhas J. P. (1975). The biochemistry of angiosperm pollen development. Bot. Rev. 41, 259–314. doi: 10.1007/BF02860839 DOI

McDowell S. C., Lopez-Marques R. L., Poulsen L. R., Palmgren M. G., Harper J. F. (2013). Loss of the arabidopsis thaliana P(4)-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen and ovule development. PloS One 8, e62577. doi: 10.1371/journal.pone.0062577 PubMed DOI PMC

Meï C., Michaud M., Cussac M., Albrieux C., Gros V., Maréchal E., et al. . (2015). Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Sci. Rep. 5, 15207. doi: 10.1038/srep15207 PubMed DOI PMC

Nakamura Y. (2017). Plant phospholipid diversity: Emerging functions in metabolism and protein–lipid interactions. Trends Plant Sci. 22, 1027–1040. doi: 10.1016/j.tplants.2017.09.002 PubMed DOI

Nakamura Y., Kobayashi K., Ohta H. (2009). Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol. Biochem. 47, 535–539. doi: 10.1016/j.plaphy.2008.12.018 PubMed DOI

Narayanan S., Prasad P. V. V., Welti R. (2018). Alterations in wheat pollen lipidome during high day and night temperature stress. Plant Cell Environ. 41, 1749–1761. doi: 10.1111/pce.13156 PubMed DOI PMC

Narayanan S., Tamura P. J., Roth M. R., Prasad P. V. V., Welti R. (2016). Wheat leaf lipids during heat stress: I. high day and night temperatures result in major lipid alterations. Plant Cell Environ. 39, 787–803. doi: 10.1111/pce.12649 PubMed DOI PMC

Pang Z., Zhou G., Ewald J., Chang L., Hacariz O., Basu N., et al. . (2022). Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761. doi: 10.1038/s41596-022-00710-w PubMed DOI

Pejchar P., Potocký M., Novotná Z., Veselková Š., Kocourková D., Valentová O., et al. . (2010). Aluminum ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase c in tobacco cells. New Phytol. 188, 150–160. doi: 10.1111/j.1469-8137.2010.03349.x PubMed DOI

Pejchar P., Sekereš J., Novotný O., Žárský V., Potocký M. (2020). Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Plant J. 103, 212–226. doi: 10.1111/tpj.14720 PubMed DOI

Perez-Riverol Y., Bai J., Bandla C., Hewapathirana S., García-Seisdedos D., Kamatchinathan S., et al. . (2022). The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552. doi: 10.1093/nar/gkab1038 PubMed DOI PMC

Pfaff J., Denton A. K., Usadel B., Pfaff C. (2020). Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158763. doi: 10.1016/j.bbalip.2020.158763 PubMed DOI

Piffanelli P., Ross J. H. E., Murphy D. J. (1997). Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus . Plant J. 11, 549–562. doi: 10.1046/j.1365-313x.1997.11030549.x PubMed DOI

Potocký M., Eliáš M., Profotová B., Novotná Z., Valentová O., Žárský V., et al. . (2003). Phosphatidic acid produced by phospholipase d is required for tobacco pollen tube growth. Planta 217, 122–130. doi: 10.1007/s00425-002-0965-4 PubMed DOI

Rotsch A. H., Kopka J., Feussner I., Ischebeck T. (2017). Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant J. 92, 129–146. doi: 10.1111/tpj.13633 PubMed DOI

Scholz P., Anstatt J., Krawczyk H. E., Ischebeck T. (2020). Signalling pinpointed to the tip: The complex regulatory network that allows pollen tube growth. Plants 9, 1098. doi: 10.3390/plants9091098 PubMed DOI PMC

Scholz P., Pejchar P., Fernkorn M., Škrabálková E., Pleskot R., Blersch K., et al. . (2022). DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytol 233, 2185–2202. doi: 10.1111/nph.17930 PubMed DOI

Sekereš J., Pleskot R., Pejchar P., Žárský V., Potocký M. (2015). The song of lipids and proteins: dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. J. Exp. Bot. 66, 1587–1598. doi: 10.1093/jxb/erv052 PubMed DOI

Shiva S., Enninful R., Roth M. R., Tamura P., Jagadish K., Welti R. (2018). An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 14, 14. doi: 10.1186/s13007-018-0282-y PubMed DOI PMC

Wang H.-J., Huang J.-C., and Jauh G.-Y. (2010). “Pollen Germination and Tube Growth,” in Advances in Botanical Research. Eds. Kader J.-C., Delseny M. (Elsevier; ), 1–52. doi: 10.1016/S0065-2296(10)54001-1 DOI

Wielandt A. G., Pedersen J. T., Falhof J., Kemmer G. C., Lund A., Ekberg K., et al. . (2015). Specific activation of the plant p-type plasma membrane h+-ATPase by lysophospholipids depends on the autoinhibitory n- and c-terminal domains*. J. Biol. Chem. 290, 16281–16291. doi: 10.1074/jbc.M114.617746 PubMed DOI PMC

Xiao S., Gao W., Chen Q. F., Chan S. W., Zheng S. X., Ma J., et al. . (2010). Overexpression of arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22, 1463–1482. doi: 10.1105/tpc.110.075333 PubMed DOI PMC

Žárský V., Potocký M., Baluška F., Cvrčková F. (2006). “Lipid metabolism, compartmentalization and signalling in the regulation of pollen tube growth,” in The pollen tube: A cellular and molecular perspective plant cell monographs. Ed. Malhó R. (Berlin, Heidelberg: Springer; ), 117–138. doi: 10.1007/7089_046 DOI

Zeniou-Meyer M., Zabari N., Ashery U., Chasserot-Golaz S., Haeberle A.-M., Demais V., et al. . (2007). Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of Large dense-core granules at a late stage. J. Biol. Chem. 282, 21746–21757. doi: 10.1074/jbc.M702968200 PubMed DOI

Zhang M., Fan J., Taylor D. C., Ohlrogge J. B. (2009). DGAT1 and PDAT1 acyltransferases have overlapping functions in arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21, 3885–3901. doi: 10.1105/tpc.109.071795 PubMed DOI PMC

Zonia L., Munnik T. (2008). Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J. Exp. Bot. 59, 861–873. doi: 10.1093/jxb/ern007 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace