Prediction of protein interactions with function in protein (de-)phosphorylation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40029919
PubMed Central
PMC11875375
DOI
10.1371/journal.pone.0319084
PII: PONE-D-24-38665
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- ataxin-1 metabolismus genetika MeSH
- fosforylace MeSH
- lidé MeSH
- mapování interakce mezi proteiny metody MeSH
- mapy interakcí proteinů * MeSH
- posttranslační úpravy proteinů * MeSH
- proteomika metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ataxin-1 MeSH
Protein-protein interactions (PPIs) form a complex network called "interactome" that regulates many functions in the cell. In recent years, there is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems such as the interactome. In particular, it has been shown that the embedding of the human Protein-Interaction Network (hPIN) in hyperbolic space (H2) captures biologically relevant information. Here we explore whether this mapping contains information that would allow us to predict the function of PPIs, more specifically interactions related to post-translational modification (PTM). We used a random forest algorithm to predict PTM-related directed PPIs, concretely, protein phosphorylation and dephosphorylation, based on hyperbolic properties and centrality measures of the hPIN mapped in H2. To evaluate the efficacy of our algorithm, we predicted PTM-related PPIs of ataxin-1, a protein which is responsible for Spinocerebellar Ataxia type 1 (SCA1). Proteomics analysis in a cellular model revealed that several of the predicted PTM-PPIs were indeed dysregulated in a SCA1-related disease network. A compact cluster composed of ataxin-1, its dysregulated PTM-PPIs and their common upstream regulators may represent critical interactions for disease pathology. Thus, our algorithm may infer phosphorylation activity on proteins through directed PPIs.
Central European Institute of Technology Masaryk University Brno Czech Republic
Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece
Zobrazit více v PubMed
Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al.. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8. doi: 10.1038/nature04209 PubMed DOI
Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al.. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122(6):957–68. doi: 10.1016/j.cell.2005.08.029 PubMed DOI
Koh G, Porras P, Aranda B, Hermjakob H, Orchard S. Analyzing protein–protein interaction networks. J Proteome Res. 2012;11(4):2014–31. PubMed
Arkin MR, Whitty A. The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions. Curr Opin Chem Biol. 2009;13(3):284–90. doi: 10.1016/j.cbpa.2009.05.125 PubMed DOI
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, et al.. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163(3):712–23. doi: 10.1016/j.cell.2015.09.053 PubMed DOI
De Las Rivas J, Fontanillo C. Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell. Brief Funct Genomics. 2012;11(6):489–96. doi: 10.1093/bfgp/els036 PubMed DOI
Kanhaiya K, Czeizler E, Gratie C, Petre I. Controlling directed protein interaction networks in cancer. Sci Rep. 2017;7(1):10327. doi: 10.1038/s41598-017-10491-y PubMed DOI PMC
Rosell M, Fernández-Recio J. Hot-spot analysis for drug discovery targeting protein-protein interactions. Expert Opin Drug Discov. 2018;13(4):327–38. doi: 10.1080/17460441.2018.1430763 PubMed DOI
Macalino S, Basith S, Clavio N, Chang H, Kang S, Choi S. Evolution of in silico strategies for protein-protein interaction drug discovery. Molecules. 2018;23(8):1963. PubMed PMC
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. 2016;15(8):533–50. doi: 10.1038/nrd.2016.29 PubMed DOI
Cannistraci CV, Alanis-Lobato G, Ravasi T. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics. 2013;29(13):i199–209. doi: 10.1093/bioinformatics/btt208 PubMed DOI PMC
Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Boguñá M. Hyperbolic geometry of complex networks. Physical Review E. 2010;82(3):036106. doi: 10.1103/PhysRevE.82.036106 PubMed DOI
Serrano MA, Boguna M, Sagues F. Uncovering the hidden geometry behind metabolic networks [Internet]. arXiv; 2011. [cited 2022 Oct 31]. Available from: http://arxiv.org/abs/1109.1934 PubMed
Papadopoulos F, Kitsak M, Serrano MÁ, Boguñá M, Krioukov D. Popularity versus similarity in growing networks. Nature. 2012;489(7417):537–40. doi: 10.1038/nature11459 PubMed DOI
Alanis-Lobato G, Mier P, Andrade-Navarro M. The latent geometry of the human protein interaction network. Bioinformatics. 2018;34(16):2826–34. PubMed PMC
Härtner F, Andrade-Navarro MA, Alanis-Lobato G. Geometric characterisation of disease modules. Appl Netw Sci. 2018;3(1):10. doi: 10.1007/s41109-018-0066-3 PubMed DOI PMC
Vagiona A-C, Mier P, Petrakis S, Andrade-Navarro MA. Analysis of Huntington’s Disease modifiers using the hyperbolic mapping of the protein interaction network. Int J Mol Sci. 2022;23(10):5853. doi: 10.3390/ijms23105853 PubMed DOI PMC
Calderone A, Castagnoli L, Cesareni G. mentha: a resource for browsing integrated protein-interaction networks. Nat Methods. 2013;10(8):690–1. doi: 10.1038/nmeth.2561 PubMed DOI
Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, et al.. MINT: the Molecular INTeraction database. Nucleic Acids Res. 2007;35(Database issue):D572–4. doi: 10.1093/nar/gkl950 PubMed DOI PMC
Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research. 2011;39(Database):D691–7. PubMed PMC
Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, et al.. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187–200. doi: 10.1002/pro.3978 PubMed DOI PMC
Xu H, Wang Y, Lin S, Deng W, Peng D, Cui Q, et al.. PTMD: a database of human disease-associated post-translational modifications. Genomics Proteomics Bioinformatics. 2018;16(4):244–51. doi: 10.1016/j.gpb.2018.06.004 PubMed DOI PMC
Buijsen R, Hu M, Sáez‐González M, Notopoulou S, Mina E, Koning W, et al.. Spinocerebellar ataxia type 1 characteristics in patient‐derived fibroblast and iPSC‐derived neuronal cultures. Movement Disorders. 2023. doi: 10.1002/mds.29446 PubMed DOI
Ju H, Kokubu H, Lim J. Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1. Mol Neurobiol. 2014;50(3):866–74. doi: 10.1007/s12035-014-8703-z PubMed DOI PMC
Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674. doi: 10.1016/j.redox.2020.101674 PubMed DOI PMC
Alanis-Lobato G, Andrade-Navarro M, Schaefer M. HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Research. 2017;45(D1):D408–14. PubMed PMC
Schaefer MH, Fontaine J-F, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS One. 2012;7(2):e31826. doi: 10.1371/journal.pone.0031826 PubMed DOI PMC
Alanis-Lobato G, Mier P, Andrade-Navarro MA. Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Appl Netw Sci. 2016;1(1):10. doi: 10.1007/s41109-016-0013-0 PubMed DOI PMC
Alanis-Lobato G, Mier P, Andrade-Navarro MA. Efficient embedding of complex networks to hyperbolic space via their Laplacian. Sci Rep. 2016;6:30108. doi: 10.1038/srep30108 PubMed DOI PMC
Papadopoulos F, Aldecoa R, Krioukov D. Network geometry inference using common neighbors. Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(2):022807. doi: 10.1103/PhysRevE.92.022807 PubMed DOI
del-Toro N, Dumousseau M, Orchard S, Jimenez RC, Galeota E, Launay G, et al.. A new reference implementation of the PSICQUIC web service. Nucleic Acids Res. 2013;41(Web Server issue):W601–6. doi: 10.1093/nar/gkt392 PubMed DOI PMC
Hu R, Xu H, Jia P, Zhao Z. KinaseMD: kinase mutations and drug response database. Nucleic Acids Research. 2021;49(D1):D552–61. PubMed PMC
Duan G, Li X, Köhn M. The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Research. 2015;43(D1):D531–5. PubMed PMC
Borgatti SP. Centrality and network flow. Social Networks. 2005;27(1):55–71. doi: 10.1016/j.socnet.2004.11.008 DOI
Freeman LC. Centrality in social networks conceptual clarification. Social Networks. 1978;1(3):215–39. doi: 10.1016/0378-8733(78)90021-7 DOI
Freeman LC. A Set of measures of centrality based on betweenness. Sociometry. 1977;40(1):35. doi: 10.2307/3033543 DOI
Sabidussi G. The centrality of a graph. Psychometrika. 1966;31(4):581–603. doi: 10.1007/BF02289527 PubMed DOI
Bonacich P, Lloyd P. Eigenvector-like measures of centrality for asymmetric relations. Social Networks. 2001;23(3):191–201. doi: 10.1016/s0378-8733(01)00038-7 DOI
Kuhn M. Building predictive models in R using the caret package. J Stat Soft. 2008;28(5):1–26. doi: 10.18637/jss.v028.i05 DOI
Svetnik V, Liaw A, Tong C, Culberson J, Sheridan R, Feuston B. Random forest: A classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58. PubMed
Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition. 1997;30(7):1145–59. doi: 10.1016/s0031-3203(96)00142-2 DOI
Lobo JM, Jiménez‐Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeography. 2007;17(2):145–51. doi: 10.1111/j.1466-8238.2007.00358.x DOI
Qin G, Li R, Zhao X. PhosD: inferring kinase–substrate interactions based on protein domains. Bioinformatics. 2017;33(8):1197–204. PubMed
Zhou Z, Yeung W, Soleymani S, Gravel N, Salcedo M, Li S, et al.. Using explainable machine learning to uncover the kinase-substrate interaction landscape. Bioinformatics. 2024. Jan 19;btae033. PubMed PMC
Laidou S, Alanis-Lobato G, Pribyl J, Raskó T, Tichy B, Mikulasek K, et al.. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol. 2020;32101458. doi: 10.1016/j.redox.2020.101458 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi: 10.1101/gr.1239303 PubMed DOI PMC
Su G, Kuchinsky A, Morris J, States D, Meng F. GLay: community structure analysis of biological networks. Bioinformatics. 2010;26(24):3135–7. PubMed PMC
Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring and manipulating networks. Proceedings of the International Conference on Weblogs and Social Media (ICWSM). 2009;3(1):361–2.
Kuleshov M, Xie Z, London A, Yang J, Evangelista J, Lachmann A. KEA3: improved kinase enrichment analysis via data integration. Nucleic Acids Research. 2021;49(W1):W304–16. PubMed PMC
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al.. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi: 10.1186/1471-2105-14-128 PubMed DOI PMC
Wang Z, Lachmann A, Keenan A, Ma’ayan A. L1000FWD: fireworks visualization of drug-induced transcriptomic signatures. Bioinformatics. 2018;34(12):2150–2. PubMed PMC
Zahra NUA, Vagiona AC, Uddin R, Andrade-Navarro MA. Selection of multi-drug targets against drug-resistant Mycobacterium tuberculosis XDR1219 using the hyperbolic mapping of the protein interaction network. IJMS. 2023;24(18):14050. PubMed PMC
Lu Z, Hunter T. Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem. 2009;78435–75. doi: 10.1146/annurev.biochem.013008.092711 PubMed DOI PMC
Hoffman L, Jensen C, Beckerle M. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Molecular Biology of the Cell. 2022;33(11):ar100. PubMed PMC
Månsson C, Kakkar V, Monsellier E, Sourigues Y, Härmark J, Kampinga HH, et al.. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones. 2014;19(2):227–39. doi: 10.1007/s12192-013-0448-5 PubMed DOI PMC
Martin DR, Dutta P, Mahajan S, Varma S, Stevens SM. Structural and activity characterization of human PHPT1 after oxidative modification. Sci Rep. 2016 Apr 1;6(1):23658. PubMed PMC
Matsuzaki S, Lee L, Knock E, Srikumar T, Sakurai M, Hazrati L. SUMO1 affects synaptic function, spine density and memory. Sci Rep. 2015;5(1):10730. doi: 10.1038/srep10730 PubMed DOI PMC
Luo X, Wang L, Hu P, Hu L. Predicting protein-protein interactions using sequence and network information via variational graph autoencoder. IEEE/ACM Trans Comput Biol Bioinform. 2023;20(5):3182–94. doi: 10.1109/TCBB.2023.3273567 PubMed DOI
Li X, Han P, Chen W, Gao C, Wang S, Song T, et al.. MARPPI: boosting prediction of protein-protein interactions with multi-scale architecture residual network. Brief Bioinform. 2023;24(1):bbac524. doi: 10.1093/bib/bbac524 PubMed DOI
Wang X, Yang W, Yang Y, He Y, Zhang J, Wang L, et al.. PPISB: a novel network-based algorithm of predicting protein-protein interactions with mixed membership stochastic blockmodel. IEEE/ACM Trans Comput Biol Bioinform. 2023;20(2):1606–12. doi: 10.1109/TCBB.2022.3196336 PubMed DOI
Su X-R, Hu L, You Z-H, Hu P-W, Zhao B-W. Multi-view heterogeneous molecular network representation learning for protein-protein interaction prediction. BMC Bioinformatics. 2022;23(1):234. doi: 10.1186/s12859-022-04766-z PubMed DOI PMC
Chen C, Zhang Q, Yu B, Yu Z, Lawrence PJ, Ma Q, et al.. Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier. Comput Biol Med. 2020;123:103899. doi: 10.1016/j.compbiomed.2020.103899 PubMed DOI
Hashemifar S, Neyshabur B, Khan A, Xu J. Predicting protein–protein interactions through sequence-based deep learning. Bioinformatics. 2018;34(17):i802–10. PubMed PMC
Zhang L, Yu G, Xia D, Wang J. Protein–protein interactions prediction based on ensemble deep neural networks. Neurocomputing. 2019;324:10–9. doi: 10.1016/j.neucom.2018.02.097 DOI
Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, et al.. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal. 2011;4(189):rs8. doi: 10.1126/scisignal.2001699 PubMed DOI
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell Mol Life Sci. 2020;77(20):4015–29. doi: 10.1007/s00018-020-03520-z PubMed DOI PMC
Sambataro F, Pennuto M. Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Prog Neurobiol. 2012;97(2):152–72. doi: 10.1016/j.pneurobio.2011.10.003 PubMed DOI
Sambataro F, Pennuto M. Post-translational modifications and protein quality control in motor neuron and Polyglutamine diseases. Front Mol Neurosci [Internet]. [cited 2022 Nov 11] 2017 Mar 31;10. Available from: http://journal.frontiersin.org/article/10.3389/fnmol.2017.00082/full PubMed DOI PMC
Rekas A, Ahn KJ, Kim J, Carver JA. The chaperone activity of α-synuclein: Utilizing deletion mutants to map its interaction with target proteins. Proteins. 2012;80(5):1316–25. doi: 10.1002/prot.24028 PubMed DOI
Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, et al.. alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci. 1999;19(14):5782–91. doi: 10.1523/JNEUROSCI.19-14-05782.1999 PubMed DOI PMC
Shirasaka M, Kuwata K, Honda R. α-Synuclein chaperone suppresses nucleation and amyloidogenesis of prion protein. Biochem Biophys Res Commun. 2020;521(1):259–64. doi: 10.1016/j.bbrc.2019.10.120 PubMed DOI
Lai S, O’Callaghan B, Zoghbi H, Orr H. 14-3-3 binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J Biol Chem. 2011;286(40):34606–16. PubMed PMC
Siddiqui I, Pervaiz N, Abbasi A. The Parkinson disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific Reports. 2016;6:24475. PubMed PMC
Gkekas I, Vagiona A-C, Pechlivanis N, Kastrinaki G, Pliatsika K, Iben S, et al.. Intranuclear inclusions of polyQ-expanded ATXN1 sequester RNA molecules. Front Mol Neurosci. 2023;16:1280546. doi: 10.3389/fnmol.2023.1280546 PubMed DOI PMC
Rufini A, Malisan F, Condò I, Testi R. Drug repositioning in friedreich ataxia. Front Neurosci. 2022;16:814445. doi: 10.3389/fnins.2022.814445 PubMed DOI PMC
Diamond M, Robinson M, Yamamoto K. Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(2):657–61. doi: 10.1073/pnas.97.2.657 PubMed DOI PMC
Duarte-Silva S, Da Silva JD, Monteiro-Fernandes D, Costa MD, Neves-Carvalho A, Raposo M, et al.. Glucocorticoid receptor-dependent therapeutic efficacy of tauroursodeoxycholic acid in preclinical models of spinocerebellar ataxia type 3. J Clin Invest. 2024;134(5):e162246. doi: 10.1172/JCI162246 PubMed DOI PMC