Cholecystokinin system is involved in the anorexigenic effect of peripherally applied palmitoylated prolactin-releasing peptide in fasted mice
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34062082
PubMed Central
PMC8820541
DOI
10.33549/physiolres.934694
PII: 934694
Knihovny.cz E-zdroje
- MeSH
- anorektika aplikace a dávkování MeSH
- antagonisté hormonů aplikace a dávkování MeSH
- chemokiny CC účinky léků metabolismus MeSH
- cholecystokinin metabolismus MeSH
- devazepid aplikace a dávkování MeSH
- hormon uvolňující prolaktin aplikace a dávkování analogy a deriváty MeSH
- injekce intraperitoneální MeSH
- injekce subkutánní MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nucleus paraventricularis hypothalami účinky léků metabolismus MeSH
- nucleus solitarius účinky léků metabolismus MeSH
- omezení příjmu potravy MeSH
- peptidové fragmenty aplikace a dávkování MeSH
- přijímání potravy účinky léků MeSH
- protoonkogenní proteiny c-fos metabolismus MeSH
- signální transdukce MeSH
- sinkalid aplikace a dávkování analogy a deriváty MeSH
- stravovací zvyklosti účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anorektika MeSH
- antagonisté hormonů MeSH
- Ccl28 protein, mouse MeSH Prohlížeč
- chemokiny CC MeSH
- cholecystokinin MeSH
- devazepid MeSH
- Fos protein, mouse MeSH Prohlížeč
- hormon uvolňující prolaktin MeSH
- JMV 236 MeSH Prohlížeč
- palm11-PrRP31 MeSH Prohlížeč
- peptidové fragmenty MeSH
- protoonkogenní proteiny c-fos MeSH
- sinkalid MeSH
Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.
Zobrazit více v PubMed
BECHTOLD DA, LUCKMAN SM. Prolactin-releasing Peptide mediates cholecystokinin-induced satiety in mice. Endocrinology. 2006;147:4723–4729. doi: 10.1210/en.2006-0753. PubMed DOI
CANO V, EZQUERRA L, RAMOS MP, RUIZ-GAYO M. Characterization of the role of endogenous cholecystokinin on the activity of the paraventricular nucleus of the hypothalamus in rats. Br J Pharmacol. 2003;140:964–970. doi: 10.1038/sj.bjp.0705513. PubMed DOI PMC
CORP ES, MCQUADE J, MORAN TH, SMITH GP. Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res. 1993;623:161–166. doi: 10.1016/0006-8993(93)90024-h. PubMed DOI
D’AGOSTINO G, LYONS DJ, CRISTIANO C, BURKE LK, MADARA JC, CAMPBELL JN, GARCIA AP, LAND BB, LOWELL BB, DILEONE RJ, HEISLER LK. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife. 2016;5 doi: 10.7554/eLife.12225. PubMed DOI PMC
DODD GT, LUCKMAN SM. Physiological roles of GPR10 and PrRP signaling. Front Endocrinol (Lausanne) 2013;4:20. doi: 10.3389/fendo.2013.00020. PubMed DOI PMC
DODD GARRON T, WORTH AMY A, NUNN N, KORPAL AARON K, BECHTOLD DAVID A, ALLISON MARGARET B, MYERS MARTIN G, STATNICK MICHAEL A, LUCKMAN SIMON M. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metabol. 2014;20:639–649. doi: 10.1016/j.cmet.2014.07.022. PubMed DOI PMC
EBENEZER IS. Effects of intracerebroventricular administration of the CCK1 receptor antagonist devazepide on food intake in rats. Eur J Pharmacol. 2002;441:79–82. doi: 10.1016/S0014-2999(02)01485-1. PubMed DOI
ELLACOTT KLJ, LAWRENCE CB, ROTHWELL NJ, LUCKMAN SM. PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology. 2002;143:368–374. doi: 10.1210/endo.143.2.8608. PubMed DOI
GANCHROW D, GANCHROW JR, CICCHINI V, BARTEL DL, KAUFMAN D, GIRARD D, WHITEHEAD MC. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J Comp Neurol. 2014;522:1565–1596. doi: 10.1002/cne.23484. PubMed DOI PMC
GOURCH A, OROSCO M, RODRIGUEZ M, MARTINEZ J, COHEN Y, JACQUOT C. Effects of a new cholecystokinin analogue (JMV 236) on food intake and brain monoamines in the rat. Neuropeptides. 1990;15:37–41. doi: 10.1016/0143-4179(90)90158-u. PubMed DOI
IBATA Y, IIJIMA N, KATAOKA Y, KAKIHARA K, TANAKA M, HOSOYA M, HINUMA S. Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci Res. 2000;38:223–230. doi: 10.1016/s0168-0102(00)00182-6. PubMed DOI
KUNEŠ J, PRAŽIENKOVÁ V, POPELOVÁ A, MIKULÁŠKOVÁ B, ZEMENOVÁ J, MALETÍNSKÁ L. Prolactin-releasing peptide: a new tool for obesity treatment. J Endocrinol. 2016;230:R51–R58. doi: 10.1530/joe-16-0046. PubMed DOI
LAWRENCE CB, CELSI F, BRENNAND J, LUCKMAN SM. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci. 2000;3:645–646. doi: 10.1038/76597. PubMed DOI
LAWRENCE CB, ELLACOTT KL, LUCKMAN SM. PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology. 2002;143:360–367. doi: 10.1210/endo.143.2.8609. PubMed DOI
LUCKMAN SM. Fos-like immunoreactivity in the brainstem of the rat following peripheral administration of cholecystokinin. J Neuroendocrinol. 1992;4:149–152. doi: 10.1111/j.1365-2826.1992.tb00152.x. PubMed DOI
MALETÍNSKÁ L, LIGNON M-F, GALAS M-C, BERNAD N, PÍRKOVÁ J, HLAVÁČEK J, SLANINOVÁ J, MARTINEZ J. Pharmacological characterization of new cholecystokinin analogues. European Journal of Pharmacology. 1992;222:233–240. doi: 10.1016/0014-2999(92)90861-W. PubMed DOI
MALETÍNSKÁ L, MAIXNEROVÁ J, MATYŠKOVÁ R, HAUGVICOVÁ R, PIRNÍK Z, KISS A, ŽELEZNÁ B. Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neuroscience. 2008;9:101. doi: 10.1186/1471-2202-9-101. PubMed DOI PMC
MALETÍNSKÁ L, NAGELOVÁ V, TICHÁ A, ZEMENOVÁ J, PIRNÍK Z, HOLUBOVÁ M, ŠPOLCOVÁ A, MIKULÁŠKOVÁ B, BLECHOVÁ M, SÝKORA D, LACINOVÁ Z, HALUZÍK M, ŽELEZNÁ B, KUNEŠ J. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes (Lond) 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI
MANISCALCO JW, RINAMAN L. Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiol Behav. 2013;121:35–42. doi: 10.1016/j.physbeh.2013.01.012. PubMed DOI PMC
MARUYAMA M, MATSUMOTO H, FUJIWARA K, KITADA C, HINUMA S, ONDA H, FUJINO M, INOUE K. Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology. 1999;140:2326–2333. doi: 10.1210/endo.140.5.6685. PubMed DOI
MORALES T, HINUMA S, SAWCHENKO PE. Prolactin-releasing peptide is expressed in afferents to the endocrine hypothalamus, but not in neurosecretory neurones. J Neuroendocrinol. 2000;12:131–140. doi: 10.1046/j.1365-2826.2000.00428.x. PubMed DOI
PASSARO E, JR, DEBAS H, OLDENDORF W, YAMADA T. Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation. Brain Res. 1982;241:335–340. PubMed
PAXINOS GF, KBJ . The Mouse Brain in Stereotaxic Coordinates. USA: Academic Press; 2004.
PETER L, STENGEL A, NOETZEL S, INHOFF T, GOEBEL M, TACHÉ Y, VEH RW, BANNERT N, GRÖTZINGER C, WIEDENMANN B, KLAPP BF, MÖNNIKES H, KOBELT P. Peripherally injected CCK-8S activates CART positive neurons of the paraventricular nucleus in rats. Peptides. 2010;31:1118–1123. doi: 10.1016/j.peptides.2010.03.013. PubMed DOI PMC
PETERS JH, SIMASKO SM, RITTER RC. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol Behav. 2006;89:477–485. doi: 10.1016/j.physbeh.2006.06.017. PubMed DOI
PIRNIK Z, KOLESÁROVÁ M, ŽELEZNÁ B, MALETÍNSKÁ L. Repeated peripheral administration of lipidized prolactin-releasing peptide analog induces c-fos and FosB expression in neurons of dorsomedial hypothalamic nucleus in male C57 mice. Neurochem Int. 2018;116:77–84. doi: 10.1016/j.neuint.2018.03.013. PubMed DOI
PIRNIK Z, MAIXNEROVÁ J, MATYSKOVÁ R, KOUTOVÁ D, ZELEZNÁ B, MALETÍNSKÁ L, KISS A. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides. 2010;31:139–144. doi: 10.1016/j.peptides.2009.09.035. PubMed DOI
PIRNIK Z, ŽELEZNÁ B, KISS A, MALETÍNSKÁ L. Peripheral administration of palmitoylated prolactin-releasing peptide induces Fos expression in hypothalamic neurons involved in energy homeostasis in NMRI male mice. Brain Res. 2015;1625:151–158. doi: 10.1016/j.brainres.2015.08.042. PubMed DOI
PLAYFORD RJ, KING AW, DEPREZ PH, DE-BELLEROCHE J, FREEMAN TC, CALAM J. Effects of diet and the cholecystokinin antagonist; devazepide (L364,718) on CCK mRNA, and tissue and plasma CCK concentrations. Eur J Clin Invest. 1993;23:641–647. doi: 10.1111/j.1365-2362.1993.tb00725.x. PubMed DOI
POPELOVÁ A, KÁKONOVÁ A, HRUBÁ L, KUNEŠ J, MALETÍNSKÁ L, ŽELEZNÁ B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res. 2018;67:339–346. doi: 10.33549/physiolres.933761. PubMed DOI
PRAŽIENKOVÁ V, HOLUBOVÁ M, PELANTOVÁ H, BUGÁŇOVÁ M, PIRNÍK Z, MIKULÁŠKOVÁ B, POPELOVÁ A, BLECHOVÁ M, HALUZÍK M, ŽELEZNÁ B, KUZMA M, KUNEŠ J, MALETÍNSKÁ L. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS One. 2017;12:e0183449–e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC
PRAŽIENKOVÁ V, POPELOVÁ A, KUNEŠ J, MALETÍNSKÁ L. Prolactin-releasing peptide: physiological and pharmacological properties. Int J Mol Sci. 2019;20 doi: 10.3390/ijms20215297. PubMed DOI PMC
QUILLET R, AYACHI S, BIHEL F, ELHABAZI K, ILIEN B, SIMONIN F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther. 2016;160:84–132. doi: 10.1016/j.pharmthera.2016.02.005. PubMed DOI
REIDELBERGER RD, CASTELLANOS DA, HULCE M. Effects of peripheral CCK receptor blockade on food intake in rats. Am J Physiol Regul Integr Comp Physiol. 2003;285:R429–437. doi: 10.1152/ajpregu.00176.2003. PubMed DOI
ROLAND BL, SUTTON SW, WILSON SJ, LUO L, PYATI J, HUVAR R, ERLANDER MG, LOVENBERG TW. Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology. 1999;140:5736–5745. doi: 10.1210/endo.140.12.7211. PubMed DOI
ROMAN CW, SLOAT SR, PALMITER RD. A tale of two circuits: CCK(NTS) neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience. 2017;358:316–324. doi: 10.1016/j.neuroscience.2017.06.049. PubMed DOI PMC
SAITO A, WILLIAMS JA, GOLDFINE ID. Alterations in brain cholecystokinin receptors after fasting. Nature. 1981;289:599–600. doi: 10.1038/289599a0. PubMed DOI
WALL KD, OLIVOS DR, RINAMAN L. High fat diet attenuates cholecystokinin-induced cFos activation of prolactin-releasing peptide-expressing a2 noradrenergic neurons in the caudal nucleus of the solitary tract. Neuroscience. 2020;447:113–121. doi: 10.1016/j.neuroscience.2019.08.054. PubMed DOI PMC
WOLTMAN TA, HULCE M, REIDELBERGER RD. Relative blood-brain barrier permeabilities of the cholecystokinin receptor antagonists devazepide and A-65186 in rats. J Pharm Pharmacol. 1999;51:917–920. doi: 10.1211/0022357991773348. PubMed DOI
WOODRUFF GN, HILL DR, BODEN P, PINNOCK R, SINGH L, HUGHES J. Functional role of brain CCK receptors. Neuropeptides. 1991;19(Suppl):45–56. doi: 10.1016/0143-4179(91)90082-t. PubMed DOI
YAMASHITA M, TAKAYANAGI Y, YOSHIDA M, NISHIMORI K, KUSAMA M, ONAKA T. Involvement of prolactin-releasing peptide in the activation of oxytocin neurones in response to food intake. J Neuroendocrinol. 2013;25:455–465. doi: 10.1111/jne.12019. PubMed DOI PMC