Prolactin-Releasing Peptide: Physiological and Pharmacological Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
18-10591S
Grantová agentura České Republiky
PubMed
31653061
PubMed Central
PMC6862262
DOI
10.3390/ijms20215297
PII: ijms20215297
Knihovny.cz E-zdroje
- Klíčová slova
- GPR10, RF-amide peptides, energy expenditure, food intake regulation, neuroprotection, prolactin-releasing peptide, signaling,
- MeSH
- energetický metabolismus účinky léků MeSH
- hormon uvolňující prolaktin chemie metabolismus farmakologie MeSH
- lidé MeSH
- neurodegenerativní nemoci farmakoterapie patologie MeSH
- neuroprotektivní látky chemie farmakologie terapeutické užití MeSH
- přijímání potravy účinky léků MeSH
- receptory spřažené s G-proteiny chemie genetika metabolismus MeSH
- signální transdukce účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- hormon uvolňující prolaktin MeSH
- neuroprotektivní látky MeSH
- PRLHR protein, human MeSH Prohlížeč
- receptory spřažené s G-proteiny MeSH
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.
Zobrazit více v PubMed
Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., Kitada C., Masuo Y., Asano T., Matsumoto H., et al. A prolactin-releasing peptide in the brain. Nature. 1998;393:272–276. doi: 10.1038/30515. PubMed DOI
Welch S.K., O’Hara B.F., Kilduff T.S., Heller H.C. Sequence and tissue distribution of a candidate G-coupled receptor cloned from rat hypothalamus. Biochem. Biophys. Res. Commun. 1995;209:606–613. doi: 10.1006/bbrc.1995.1543. PubMed DOI
Dodd G.T., Luckman S.M. Physiological Roles of GPR10 and PrRP Signaling. Front. Endocrinol. 2013;4:20–28. doi: 10.3389/fendo.2013.00020. PubMed DOI PMC
Wang Y., Wang C.Y., Wu Y., Huang G., Li J., Leung F.C. Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens. Endocrinology. 2012;153:1861–1874. doi: 10.1210/en.2011-1719. PubMed DOI
Yamada M., Ozawa A., Ishii S., Shibusawa N., Hashida T., Ishizuka T., Hosoya T., Monden T., Satoh T., Mori M. Isolation and characterization of the rat prolactin-releasing peptide gene: Multiple TATA boxes in the promoter region. Biochem. Biophys. Res. Commun. 2001;281:53–56. doi: 10.1006/bbrc.2001.4308. PubMed DOI
Southey B.R., Rodriguez-Zas S.L., Sweedler J.V. Prediction of neuropeptide prohormone cleavages with application to RFamides. Peptides. 2006;27:1087–1098. doi: 10.1016/j.peptides.2005.07.026. PubMed DOI
Fujimoto M., Takeshita K., Wang X., Takabatake I., Fujisawa Y., Teranishi H., Ohtani M., Muneoka Y., Ohta S. Isolation and characterization of a novel bioactive peptide, Carassius RFamide (C-RFa), from the brain of the Japanese crucian carp. Biochem. Biophys. Res. Commun. 1998;242:436–440. doi: 10.1006/bbrc.1997.7973. PubMed DOI
Sakamoto T., Oda A., Yamamoto K., Kaneko M., Kikuyama S., Nishikawa A., Takahashi A., Kawauchi H., Tsutsui K., Fujimoto M. Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis. Peptides. 2006;27:3347–3351. doi: 10.1016/j.peptides.2006.08.003. PubMed DOI
Tachibana T., Moriyama S., Takahashi A., Tsukada A., Oda A., Takeuchi S., Sakamoto T. Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour. J. Neuroendocrinol. 2011;23:74–81. doi: 10.1111/j.1365-2826.2010.02078.x. PubMed DOI
Lagerstrom M.C., Fredriksson R., Bjarnadottir T.K., Schioth H.B. The ancestry of the prolactin-releasing hormone precursor. Ann. N. Y. Acad. Sci. 2005;1040:368–370. doi: 10.1196/annals.1327.064. PubMed DOI
Matsumoto H., Noguchi J., Horikoshi Y., Kawamata Y., Kitada C., Hinuma S., Onda H., Nishimura O., Fujino M. Stimulation of prolactin release by prolactin-releasing peptide in rats. Biochem. Biophys. Res. Commun. 1999;259:321–324. doi: 10.1006/bbrc.1999.0789. PubMed DOI
Lawrence C.B., Ellacott K.L., Luckman S.M. PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology. 2002;143:360–367. doi: 10.1210/endo.143.2.8609. PubMed DOI
Samson W.K., Resch Z.T., Murphy T.C., Chang J.K. Gender-biased activity of the novel prolactin releasing peptides: Comparison with thyrotropin releasing hormone reveals only pharmacologic effects. Endocrine. 1998;9:289–291. doi: 10.1385/ENDO:9:3:289. PubMed DOI
Lawrence C.B., Celsi F., Brennand J., Luckman S.M. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 2000;3:645–646. doi: 10.1038/76597. PubMed DOI
Seal L.J., Small C.J., Dhillo W.S., Stanley S.A., Abbott C.R., Ghatei M.A., Bloom S.R. PRL-releasing peptide inhibits food intake in male rats via the dorsomedial hypothalamic nucleus and not the paraventricular hypothalamic nucleus. Endocrinology. 2001;142:4236–4243. doi: 10.1210/endo.142.10.8419. PubMed DOI
Takayanagi Y., Matsumoto H., Nakata M., Mera T., Fukusumi S., Hinuma S., Ueta Y., Yada T., Leng G., Onaka T. Endogenous prolactin-releasing peptide regulates food intake in rodents. J. Clin. Investig. 2008;118:4014–4024. doi: 10.1172/JCI34682. PubMed DOI PMC
Onaka T., Takayanagi Y., Leng G. Metabolic and stress-related roles of prolactin-releasing peptide. Trends Endocrinol. Metab. 2010;21:287–293. doi: 10.1016/j.tem.2010.01.005. PubMed DOI
Maruyama M., Matsumoto H., Fujiwara K., Noguchi J., Kitada C., Fujino M., Inoue K. Prolactin-releasing peptide as a novel stress mediator in the central nervous system. Endocrinology. 2001;142:2032–2038. doi: 10.1210/endo.142.5.8118. PubMed DOI
Zhang S.Q., Inoue S., Kimura M. Sleep-promoting activity of prolactin-releasing peptide (PrRP) in the rat. Neuroreport. 2001;12:3173–3176. doi: 10.1097/00001756-200110290-00006. PubMed DOI
Zhang S.Q., Kimura M., Inoue S. Effects of prolactin-releasing peptide (PrRP) on sleep regulation in rats. Psychiatry Clin. Neurosci. 2000;54:262–264. doi: 10.1046/j.1440-1819.2000.00670.x. PubMed DOI
Samson W.K., Resch Z.T., Murphy T.C. A novel action of the newly described prolactin-releasing peptides: Cardiovascular regulation. Brain Res. 2000;858:19–25. doi: 10.1016/S0006-8993(99)02451-8. PubMed DOI
Mikulaskova B., Maletinska L., Zicha J., Kunes J. The role of food intake regulating peptides in cardiovascular regulation. Mol. Cell. Endocrinol. 2016;436:78–92. doi: 10.1016/j.mce.2016.07.021. PubMed DOI
Yamada T., Mochiduki A., Sugimoto Y., Suzuki Y., Itoi K., Inoue K. Prolactin-releasing peptide regulates the cardiovascular system via corticotrophin-releasing hormone. J. Neuroendocrinol. 2009;21:586–593. doi: 10.1111/j.1365-2826.2009.01875.x. PubMed DOI
Holubova M., Hruba L., Popelova A., Bencze M., Prazienkova V., Gengler S., Kratochvilova H., Haluzik M., Zelezna B., Kunes J., et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology. Neuropharmacology. 2019;144:377–387. doi: 10.1016/j.neuropharm.2018.11.002. PubMed DOI
Popelova A., Prazienkova V., Neprasova B., Kasperova B.J., Hruba L., Holubova M., Zemenova J., Blum D., Zelezna B., Galas M.C., et al. Novel Lipidized Analog of Prolactin-Releasing Peptide Improves Memory Impairment and Attenuates Hyperphosphorylation of Tau Protein in a Mouse Model of Tauopathy. J. Alzheimers Dis. 2018;62:1725–1736. doi: 10.3233/JAD-171041. PubMed DOI
Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J., Haluzik M., Zelezna B., Galas M.C., Maletinska L. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 2015;45:823–835. doi: 10.3233/JAD-143150. PubMed DOI
Marchese A., Heiber M., Nguyen T., Heng H.H., Saldivia V.R., Cheng R., Murphy P.M., Tsui L.C., Shi X., Gregor P., et al. Cloning and chromosomal mapping of three novel genes, GPR9, GPR10, and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics. 1995;29:335–344. doi: 10.1006/geno.1995.9996. PubMed DOI
Lagerstrom M.C., Fredriksson R., Bjarnadottir T.K., Fridmanis D., Holmquist T., Andersson J., Yan Y.L., Raudsepp T., Zoorob R., Kukkonen J.P., et al. Origin of the prolactin-releasing hormone (PRLH) receptors: Evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during vertebrate evolution. Genomics. 2005;85:688–703. doi: 10.1016/j.ygeno.2005.02.007. PubMed DOI
Lin S.H. Results and Problems in Cell Differentiation. Volume 46. Springer; Berlin/Heidelberg, Germany: 2008. Prolactin-releasing peptide; pp. 57–88. PubMed DOI
Lin S.H., Arai A.C., Wang Z., Nothacker H.P., Civelli O. The carboxyl terminus of the prolactin-releasing peptide receptor interacts with PDZ domain proteins involved in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor clustering. Mol. Pharmacol. 2001;60:916–923. doi: 10.1124/mol.60.5.916. PubMed DOI
Roland B.L., Sutton S.W., Wilson S.J., Luo L., Pyati J., Huvar R., Erlander M.G., Lovenberg T.W. Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology. 1999;140:5736–5745. doi: 10.1210/endo.140.12.7211. PubMed DOI
Engstrom M., Brandt A., Wurster S., Savola J.M., Panula P. Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J. Pharmacol. Exp. Ther. 2003;305:825–832. doi: 10.1124/jpet.102.047118. PubMed DOI
Elshourbagy N.A., Ames R.S., Fitzgerald L.R., Foley J.J., Chambers J.K., Szekeres P.G., Evans N.A., Schmidt D.B., Buckley P.T., Dytko G.M., et al. Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J. Biol. Chem. 2000;275:25965–25971. doi: 10.1074/jbc.M004515200. PubMed DOI
Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M., Smith K.E., Tamm J.A., Boteju L.W., Lakhlani P.P., et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 2000;275:39324–39331. doi: 10.1074/jbc.M004385200. PubMed DOI
Fujii R., Fukusumi S., Hosoya M., Kawamata Y., Habata Y., Hinuma S., Sekiguchi M., Kitada C., Kurokawa T., Nishimura O., et al. Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul. Pept. 1999;83:1–10. doi: 10.1016/S0167-0115(99)00028-2. PubMed DOI
Morales T., Hinuma S., Sawchenko P.E. Prolactin-releasing peptide is expressed in afferents to the endocrine hypothalamus, but not in neurosecretory neurones. J. Neuroendocrinol. 2000;12:131–140. doi: 10.1046/j.1365-2826.2000.00428.x. PubMed DOI
Matsumoto H., Murakami Y., Horikoshi Y., Noguchi J., Habata Y., Kitada C., Hinuma S., Onda H., Fujino M. Distribution and characterization of immunoreactive prolactin-releasing peptide (PrRP) in rat tissue and plasma. Biochem. Biophys. Res. Commun. 1999;257:264–268. doi: 10.1006/bbrc.1999.0463. PubMed DOI
Maruyama M., Matsumoto H., Fujiwara K., Kitada C., Hinuma S., Onda H., Fujino M., Inoue K. Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology. 1999;140:2326–2333. doi: 10.1210/endo.140.5.6685. PubMed DOI
Nieminen M.L., Brandt A., Pietila P., Panula P. Expression of mammalian RF-amide peptides neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and the PrRP receptor in the peripheral tissues of the rat. Peptides. 2000;21:1695–1701. doi: 10.1016/S0196-9781(00)00319-3. PubMed DOI
Reis F.M., Vigano P., Arnaboldi E., Spritzer P.M., Petraglia F., Di Blasio A.M. Expression of prolactin-releasing peptide and its receptor in the human decidua. Mol. Hum. Reprod. 2002;8:356–362. doi: 10.1093/molehr/8.4.356. PubMed DOI
Sakamoto T., Amano M., Hyodo S., Moriyama S., Takahashi A., Kawauchi H., Ando M. Expression of prolactin-releasing peptide and prolactin in the euryhaline mudskippers (Periophthalmus modestus): Prolactin-releasing peptide as a primary regulator of prolactin. J. Mol. Endocrinol. 2005;34:825–834. doi: 10.1677/jme.1.01768. PubMed DOI
Ibata Y., Iijima N., Kataoka Y., Kakihara K., Tanaka M., Hosoya M., Hinuma S. Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci. Res. 2000;38:223–230. doi: 10.1016/S0168-0102(00)00182-6. PubMed DOI
Nieminen M.L., Nystedt J., Panula P. Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Dev. Dyn. 2003;226:561–569. doi: 10.1002/dvdy.10261. PubMed DOI
Takahashi K., Totsune K., Murakami O., Sone M., Noshiro T., Hayashi Y., Sasano H., Shibahara S. Expression of prolactin-releasing peptide and its receptor in the human adrenal glands and tumor tissues of adrenocortical tumors, pheochromocytomas and neuroblastomas. Peptides. 2002;23:1135–1140. doi: 10.1016/S0196-9781(02)00046-3. PubMed DOI
Kimura A., Ohmichi M., Tasaka K., Kanda Y., Ikegami H., Hayakawa J., Hisamoto K., Morishige K., Hinuma S., Kurachi H., et al. Prolactin-releasing peptide activation of the prolactin promoter is differentially mediated by extracellular signal-regulated protein kinase and c-Jun N-terminal protein kinase. J. Biol. Chem. 2000;275:3667–3674. doi: 10.1074/jbc.275.5.3667. PubMed DOI
Langmead C.J., Szekeres P.G., Chambers J.K., Ratcliffe S.J., Jones D.N., Hirst W.D., Price G.W., Herdon H.J. Characterization of the binding of [(125)I]-human prolactin releasing peptide (PrRP) to GPR10, a novel G protein coupled receptor. Br. J. Pharmacol. 2000;131:683–688. doi: 10.1038/sj.bjp.0703617. PubMed DOI PMC
Duval D.L., Gutierrez-Hartmann A. PRL-releasing peptide stimulation of PRL gene transcription--enter AKT. Endocrinology. 2002;143:11–12. doi: 10.1210/endo.143.1.8647. PubMed DOI
Hayakawa J., Ohmichi M., Tasaka K., Kanda Y., Adachi K., Nishio Y., Hisamoto K., Mabuchi S., Hinuma S., Murata Y. Regulation of the PRL promoter by Akt through cAMP response element binding protein. Endocrinology. 2002;143:13–22. doi: 10.1210/endo.143.1.8586. PubMed DOI
Nanmoku T., Takekoshi K., Fukuda T., Ishii K., Isobe K., Kawakami Y. Stimulation of catecholamine biosynthesis via the PKC pathway by prolactin-releasing peptide in PC12 rat pheochromocytoma cells. J. Endocrinol. 2005;186:233–239. doi: 10.1677/joe.1.05919. PubMed DOI
Nanmoku T., Takekoshi K., Isobe K., Kawakami Y., Nakai T., Okuda Y. Prolactin-releasing peptide stimulates catecholamine release but not proliferation in rat pheochromocytoma PC12 cells. Neurosci. Lett. 2003;350:33–36. doi: 10.1016/S0304-3940(03)00836-X. PubMed DOI
Samson W.K., Taylor M.M. Prolactin releasing peptide (PrRP): An endogenous regulator of cell growth. Peptides. 2006;27:1099–1103. doi: 10.1016/j.peptides.2006.01.008. PubMed DOI
Tachibana T., Sakamoto T. Functions of two distinct “prolactin-releasing peptides” evolved from a common ancestral gene. Front. Endocrinol. 2014;5:170. doi: 10.3389/fendo.2014.00170. PubMed DOI PMC
Varghese B.V., Koohestani F., McWilliams M., Colvin A., Gunewardena S., Kinsey W.H., Nowak R.A., Nothnick W.B., Chennathukuzhi V.M. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc. Natl. Acad. Sci. USA. 2013;110:2187–2192. doi: 10.1073/pnas.1215759110. PubMed DOI PMC
Maixnerova J., Spolcova A., Pychova M., Blechova M., Elbert T., Rezacova M., Zelezna B., Maletinska L. Characterization of prolactin-releasing peptide: Binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides. 2011;32:811–817. doi: 10.1016/j.peptides.2010.12.011. PubMed DOI
Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M., Spolcova A., Mikulaskova B., Blechova M., Sykora D., et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. (Lond.) 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI
Boyle R.G., Downham R., Ganguly T., Humphries J., Smith J., Travers S. Structure-activity studies on prolactin-releasing peptide (PrRP). Analogues of PrRP-(19-31)-peptide. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2005;11:161–165. doi: 10.1002/psc.612. PubMed DOI
Deluca S.H., Rathmann D., Beck-Sickinger A.G., Meiler J. The activity of prolactin releasing peptide correlates with its helicity. Biopolymers. 2013;99:314–325. doi: 10.1002/bip.22162. PubMed DOI PMC
Maletinska L., Spolcova A., Maixnerova J., Blechova M., Zelezna B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides. 2011;32:1887–1892. doi: 10.1016/j.peptides.2011.08.011. PubMed DOI
Quillet R., Ayachi S., Bihel F., Elhabazi K., Ilien B., Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol. Ther. 2016;160:84–132. doi: 10.1016/j.pharmthera.2016.02.005. PubMed DOI
D’Ursi A.M., Albrizio S., Di Fenza A., Crescenzi O., Carotenuto A., Picone D., Novellino E., Rovero P. Structural studies on Hgr3 orphan receptor ligand prolactin-releasing peptide. J. Med. Chem. 2002;45:5483–5491. doi: 10.1021/jm020975p. PubMed DOI
Brasnjevic I., Steinbusch H.W., Schmitz C., Martinez-Martinez P., European NanoBioPharmaceutics Research I. Delivery of peptide and protein drugs over the blood-brain barrier. Prog. Neurobiol. 2009;87:212–251. doi: 10.1016/j.pneurobio.2008.12.002. PubMed DOI
Knudsen L.B., Nielsen P.F., Huusfeldt P.O., Johansen N.L., Madsen K., Pedersen F.Z., Thogersen H., Wilken M., Agerso H. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 2000;43:1664–1669. doi: 10.1021/jm9909645. PubMed DOI
Gault V.A., Kerr B.D., Harriott P., Flatt P.R. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin. Sci. (Lond.) 2011;121:107–117. doi: 10.1042/CS20110006. PubMed DOI
Kunes J., Prazienkova V., Popelova A., Mikulaskova B., Zemenova J., Maletinska L. Prolactin-releasing peptide: A new tool for obesity treatment. J. Endocrinol. 2016;230:R51–R58. doi: 10.1530/JOE-16-0046. PubMed DOI
Prazienkova V., Ticha A., Blechova M., Spolcova A., Zelezna B., Maletinska L. Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C- terminal aromatic ring. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2016;67:121–128. PubMed
Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B., Popelova A., Blechova M., Haluzik M., Zelezna B., et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE. 2017;12:e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC
Pflimlin E., Lear S., Lee C., Yu S., Zou H., To A., Joseph S., Nguyen-Tran V., Tremblay M.S., Shen W. Design of a Long-Acting and Selective MEG-Fatty Acid Stapled Prolactin-Releasing Peptide Analog. ACS Med. Chem. Lett. 2019;10:1166–1172. doi: 10.1021/acsmedchemlett.9b00182. PubMed DOI PMC
Lawrence C.B., Liu Y.L., Stock M.J., Luckman S.M. Anorectic actions of prolactin-releasing peptide are mediated by corticotropin-releasing hormone receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;286:R101–R107. doi: 10.1152/ajpregu.00402.2003. PubMed DOI
Arora S., Anubhuti Role of neuropeptides in appetite regulation and obesity—A review. Neuropeptides. 2006;40:375–401. doi: 10.1016/j.npep.2006.07.001. PubMed DOI
Sohn J.W. Network of hypothalamic neurons that control appetite. BMB Rep. 2015;48:229–233. doi: 10.5483/BMBRep.2015.48.4.272. PubMed DOI PMC
Schwartz M.W., Woods S.C., Porte D., Jr., Seeley R.J., Baskin D.G. Central nervous system control of food intake. Nature. 2000;404:661–671. doi: 10.1038/35007534. PubMed DOI
Ellacott K.L., Lawrence C.B., Rothwell N.J., Luckman S.M. PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology. 2002;143:368–374. doi: 10.1210/endo.143.2.8608. PubMed DOI
Vergoni A.V., Watanobe H., Guidetti G., Savino G., Bertolini A., Schioth H.B. Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats. Brain Res. 2002;955:207–213. doi: 10.1016/S0006-8993(02)03462-5. PubMed DOI
Ellacott K.L., Lawrence C.B., Pritchard L.E., Luckman S.M. Repeated administration of the anorectic factor prolactin-releasing peptide leads to tolerance to its effects on energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285:R1005–R1010. doi: 10.1152/ajpregu.00237.2003. PubMed DOI
Gu W., Geddes B.J., Zhang C., Foley K.P., Stricker-Krongrad A. The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosci. 2004;22:93–103. doi: 10.1385/JMN:22:1-2:93. PubMed DOI
Bjursell M., Lenneras M., Goransson M., Elmgren A., Bohlooly Y.M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 2007;363:633–638. doi: 10.1016/j.bbrc.2007.09.016. PubMed DOI
Bechtold D.A., Luckman S.M. Prolactin-releasing Peptide mediates cholecystokinin-induced satiety in mice. Endocrinology. 2006;147:4723–4729. doi: 10.1210/en.2006-0753. PubMed DOI
Mochiduki A., Takeda T., Kaga S., Inoue K. Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J. Neuroendocrinol. 2010;22:576–584. doi: 10.1111/j.1365-2826.2010.01993.x. PubMed DOI
Matsumoto H., Maruyama M., Noguchi J., Horikoshi Y., Fujiwara K., Kitada C., Hinuma S., Onda H., Nishimura O., Inoue K., et al. Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci. Lett. 2000;285:234–238. doi: 10.1016/S0304-3940(00)01077-6. PubMed DOI
Mera T., Fujihara H., Kawasaki M., Hashimoto H., Saito T., Shibata M., Saito J., Oka T., Tsuji S., Onaka T., et al. Prolactin-releasing peptide is a potent mediator of stress responses in the brain through the hypothalamic paraventricular nucleus. Neuroscience. 2006;141:1069–1086. doi: 10.1016/j.neuroscience.2006.04.023. PubMed DOI
Seal L.J., Small C.J., Dhillo W.S., Kennedy A.R., Ghatei M.A., Bloom S.R. Prolactin-releasing peptide releases corticotropin-releasing hormone and increases plasma adrenocorticotropin via the paraventricular nucleus of the hypothalamus. Neuroendocrinology. 2002;76:70–78. doi: 10.1159/000064427. PubMed DOI
Kelly S.P., Peter R.E. Prolactin-releasing peptide, food intake, and hydromineral balance in goldfish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:R1474–R1481. doi: 10.1152/ajpregu.00129.2006. PubMed DOI
Tachibana T., Saito S., Tomonaga S., Takagi T., Saito E.S., Nakanishi T., Koutoku T., Tsukada A., Ohkubo T., Boswell T., et al. Effect of central administration of prolactin-releasing peptide on feeding in chicks. Physiol. Behav. 2004;80:713–719. doi: 10.1016/j.physbeh.2003.12.005. PubMed DOI
Tachibana T., Tsukada A., Fujimoto M., Takahashi H., Ohkubo T., Boswell T., Furuse M. Comparison of mammalian prolactin-releasing peptide and Carassius RFamide for feeding behavior and prolactin secretion in chicks. Gen. Comp. Endocrinol. 2005;144:264–269. doi: 10.1016/j.ygcen.2005.06.012. PubMed DOI
Pirnik Z., Zelezna B., Kiss A., Maletinska L. Peripheral administration of palmitoylated prolactin-releasing peptide induces Fos expression in hypothalamic neurons involved in energy homeostasis in NMRI male mice. Brain Res. 2015;1625:151–158. doi: 10.1016/j.brainres.2015.08.042. PubMed DOI
Mikulaskova B., Zemenova J., Pirnik Z., Prazienkova V., Bednarova L., Zelezna B., Maletinska L., Kunes J. Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides. 2016;75:109–117. doi: 10.1016/j.peptides.2015.11.005. PubMed DOI
Pirnik Z., Kolesarova M., Zelezna B., Maletinska L. Repeated peripheral administration of lipidized prolactin-releasing peptide analog induces c-fos and FosB expression in neurons of dorsomedial hypothalamic nucleus in male C57 mice. Neurochem. Int. 2018;116:77–84. doi: 10.1016/j.neuint.2018.03.013. PubMed DOI
Holubova M., Zemenova J., Mikulaskova B., Panajotova V., Stohr J., Haluzik M., Kunes J., Zelezna B., Maletinska L. Palmitoylated PrRP analog decreases body weight in rats with DIO but not in ZDF rats. J. Endocrinol. 2016 doi: 10.1530/JOE-15-0519. PubMed DOI
Mikulaskova B., Holubova M., Prazienkova V., Zemenova J., Hruba L., Haluzik M., Zelezna B., Kunes J., Maletinska L. Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutr. Diabetes. 2018;8:5. doi: 10.1038/s41387-017-0015-8. PubMed DOI PMC
Cermakova M., Pelantova H., Neprasova B., Sediva B., Maletinska L., Kunes J., Tomasova P., Zelezna B., Kuzma M. Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J. Proteome Res. 2019;18:1735–1750. doi: 10.1021/acs.jproteome.8b00964. PubMed DOI
Hassing L.B., Dahl A.K., Thorvaldsson V., Berg S., Gatz M., Pedersen N.L., Johansson B. Overweight in midlife and risk of dementia: A 40-year follow-up study. Int. J. Obes. (Lond.) 2009;33:893–898. doi: 10.1038/ijo.2009.104. PubMed DOI PMC
Kadohara K., Sato I., Kawakami K. Diabetes mellitus and risk of early-onset Alzheimer’s disease: A population-based case-control study. Eur. J. Neurol. 2017;24:944–949. doi: 10.1111/ene.13312. PubMed DOI
Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. PubMed DOI PMC
Maletinska L., Popelova A., Zelezna B., Bencze M., Kunes J. The impact of anorexigenic peptides in experimental models of Alzheimer’s disease pathology. J. Endocrinol. 2019;240:R47–R72. doi: 10.1530/JOE-18-0532. PubMed DOI
Prazienkova V., Schirmer C., Holubova M., Zelezna B., Kunes J., Galas M.C., Maletinska L. Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. J. Alzheimers Dis. 2019;67:1187–1200. doi: 10.3233/JAD-180837. PubMed DOI
Hirata A.E., Andrade I.S., Vaskevicius P., Dolnikoff M.S. Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz. J. Med Biol. Res. Rev. Bras. Pesqui. Med. Biol. Soc. Bras. Biofisica. 1997;30:671–674. doi: 10.1590/S0100-879X1997000500016. PubMed DOI
Matyskova R., Maletinska L., Maixnerova J., Pirnik Z., Kiss A., Zelezna B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol. Res. 2008;57:727–734. PubMed
Jankowsky J.L., Slunt H.H., Ratovitski T., Jenkins N.A., Copeland N.G., Borchelt D.R. Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomol. Eng. 2001;17:157–165. doi: 10.1016/S1389-0344(01)00067-3. PubMed DOI
Maniscalco J.W., Rinaman L. Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol. Behav. 2017;176:195–206. doi: 10.1016/j.physbeh.2017.01.027. PubMed DOI PMC
Morales T., Sawchenko P.E. Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience. 2003;121:771–778. doi: 10.1016/S0306-4522(03)00522-0. PubMed DOI
Card J.P., Johnson A.L., Llewellyn-Smith I.J., Zheng H., Anand R., Brierley D.I., Trapp S., Rinaman L. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J. Comp. Neurol. 2018;526:2149–2164. doi: 10.1002/cne.24482. PubMed DOI PMC
Zhu L.L., Onaka T. Facilitative role of prolactin-releasing peptide neurons in oxytocin cell activation after conditioned-fear stimuli. Neuroscience. 2003;118:1045–1053. doi: 10.1016/S0306-4522(03)00059-9. PubMed DOI
Quillet R., Simonin F. The neuropeptide FF: A signal for M1 to M2 type switching in macrophages from the adipose tissue. Med. Sci. (Paris) 2018;34:27–29. doi: 10.1051/medsci/20183401008. PubMed DOI
Ma L., MacTavish D., Simonin F., Bourguignon J.J., Watanabe T., Jhamandas J.H. Prolactin-releasing peptide effects in the rat brain are mediated through the Neuropeptide FF receptor. Eur. J. Neurosci. 2009;30:1585–1593. doi: 10.1111/j.1460-9568.2009.06956.x. PubMed DOI
Lin S.H., Leslie F.M., Civelli O. Neurochemical properties of the prolactin releasing peptide (PrRP) receptor expressing neurons: Evidence for a role of PrRP as a regulator of stress and nociception. Brain Res. 2002;952:15–30. doi: 10.1016/S0006-8993(02)03183-9. PubMed DOI
Laurent P., Becker J.A., Valverde O., Ledent C., de Kerchove d’Exaerde A., Schiffmann S.N., Maldonado R., Vassart G., Parmentier M. The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10. Nat. Neurosci. 2005;8:1735–1741. doi: 10.1038/nn1585. PubMed DOI
Fujiwara K., Matsumoto H., Yada T., Inoue K. Identification of the prolactin-releasing peptide-producing cell in the rat adrenal gland. Regul. Pept. 2005;126:97–102. doi: 10.1016/j.regpep.2004.08.039. PubMed DOI
Feng Y., Zhao H., An X.F., Ma S.L., Chen B.Y. Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 2007;419:38–42. doi: 10.1016/j.neulet.2007.03.069. PubMed DOI
Maruyama M., Matsumoto H., Fujiwara K., Noguchi J., Kitada C., Hinuma S., Onda H., Nishimura O., Fujino M., Higuchi T., et al. Central administration of prolactin-releasing peptide stimulates oxytocin release in rats. Neurosci. Lett. 1999;276:193–196. doi: 10.1016/S0304-3940(99)00831-9. PubMed DOI
An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis
Lipidization as a tool toward peptide therapeutics