Cellular Signaling and Anti-Apoptotic Effects of Prolactin-Releasing Peptide and Its Analog on SH-SY5Y Cells

. 2020 Sep 01 ; 21 (17) : . [epub] 20200901

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32882929

Grantová podpora
20-00546S Grantová Agentura České Republiky
RVO:61388963 Akademie Věd České Republiky

Prolactin-releasing peptide (PrRP), a natural ligand for the GPR10 receptor, is a neuropeptide with anorexigenic and antidiabetic properties. Due to its role in the regulation of food intake, PrRP is a potential drug for obesity treatment and associated type 2 diabetes mellitus (T2DM). Recently, the neuroprotective effects of lipidized PrRP analogs have been proven. In this study, we focused on the molecular mechanisms of action of natural PrRP31 and its lipidized analog palm11-PrRP31 in the human neuroblastoma cell line SH-SY5Y to describe their cellular signaling and possible anti-apoptotic properties. PrRP31 significantly upregulated the phosphoinositide-3 kinase-protein kinase B/Akt (PI3K-PKB/Akt) and extracellular signal-regulated kinase/cAMP response element-binding protein (ERK-CREB) signaling pathways that promote metabolic cell survival and growth. In addition, we proved via protein kinase inhibitors that activation of signaling pathways is mediated specifically by PrRP31 and its palmitoylated analog. Furthermore, the potential neuroprotective properties were studied through activation of anti-apoptotic pathways of PrRP31 and palm11-PrRP31 using the SH-SY5Y cell line and rat primary neuronal culture stressed with toxic methylglyoxal (MG). The results indicate increased viability of the cells treated with PrRP and palm11-PrRP31 and a reduced degree of apoptosis induced by MG, suggesting their potential use in the treatment of neurological disorders.

Zobrazit více v PubMed

Bjursell M., Lenneras M., Goransson M., Elmgren A., Bohlooly Y.M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 2007;363:633–638. doi: 10.1016/j.bbrc.2007.09.016. PubMed DOI

Pražienková V., Popelová A., Kuneš J., Maletínská L. Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int. J. Mol. Sci. 2019;20:5297. doi: 10.3390/ijms20215297. PubMed DOI PMC

Lawrence C.B., Celsi F., Brennand J., Luckman S.M. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 2000;3:645–646. doi: 10.1038/76597. PubMed DOI

Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., Kitada C., Masuo Y., Asano T., Matsumoto H., et al. A prolactin-releasing peptide in the brain. Nature. 1998;393:272–276. doi: 10.1038/30515. PubMed DOI

Kuneš J., Pražienková V., Popelová A., Mikulášková B., Zemenová J., Maletínská L. Prolactin-releasing peptide: A new tool for obesity treatment. J. Endocrinol. 2016;230:R51–R58. doi: 10.1530/JOE-16-0046. PubMed DOI

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M., Spolcova A., Mikulaskova B., Blechova M., Sykora D., et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI

Holubova M., Zemenova J., Mikulaskova B., Panajotova V., Stohr J., Haluzik M., Kunes J., Zelezna B., Maletinska L. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 2016;229:85–96. doi: 10.1530/JOE-15-0519. PubMed DOI

Mikulaskova B., Holubova M., Prazienkova V., Zemenova J., Hruba L., Haluzik M., Zelezna B., Kunes J., Maletinska L. Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutr. Diabetes. 2018;8:5. doi: 10.1038/s41387-017-0015-8. PubMed DOI PMC

Glenner G.G., Wong C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984;120:885–890. doi: 10.1016/S0006-291X(84)80190-4. PubMed DOI

Buee L., Bussiere T., Buee-Scherrer V., Delacourte A., Hof P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 2000;33:95–130. doi: 10.1016/S0165-0173(00)00019-9. PubMed DOI

Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., de la Monte S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis. 2005;7:63–80. doi: 10.3233/JAD-2005-7107. PubMed DOI

de la Monte S.M., Wands J.R. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J. Diabetes Sci. Technol. 2008;2:1101–1113. doi: 10.1177/193229680800200619. PubMed DOI PMC

Takeda S., Sato N., Uchio-Yamada K., Sawada K., Kunieda T., Takeuchi D., Kurinami H., Shinohara M., Rakugi H., Morishita R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA. 2010;107:7036–7041. doi: 10.1073/pnas.1000645107. PubMed DOI PMC

Liu Y., Liu F., Grundke-Iqbal I., Iqbal K., Gong C.X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol. 2011;225:54–62. doi: 10.1002/path.2912. PubMed DOI PMC

Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J., Haluzik M., Zelezna B., Galas M.C., Maletinska L. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 2015;45:823–835. doi: 10.3233/JAD-143150. PubMed DOI

Schindowski K., Bretteville A., Leroy K., Begard S., Brion J.P., Hamdane M., Buee L. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am. J. Pathol. 2006;169:599–616. doi: 10.2353/ajpath.2006.060002. PubMed DOI PMC

Popelova A., Prazienkova V., Neprasova B., Kasperova B.J., Hruba L., Holubova M., Zemenova J., Blum D., Zelezna B., Galas M.C., et al. Novel Lipidized Analog of Prolactin-Releasing Peptide Improves Memory Impairment and Attenuates Hyperphosphorylation of Tau Protein in a Mouse Model of Tauopathy. J. Alzheimers Dis. 2018;62:1725–1736. doi: 10.3233/JAD-171041. PubMed DOI

Holubová M., Hrubá L., Popelová A., Bencze M., Pražienková V., Gengler S., Kratochvílová H., Haluzík M., Železná B., Kuneš J., et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology. 2019;144:377–387. doi: 10.1016/j.neuropharm.2018.11.002. PubMed DOI

Kimura A., Ohmichi M., Tasaka K., Kanda Y., Ikegami H., Hayakawa J., Hisamoto K., Morishige K., Hinuma S., Kurachi H., et al. Prolactin-releasing peptide activation of the prolactin promoter is differentially mediated by extracellular signal-regulated protein kinase and c-Jun N-terminal protein kinase. J. Biol. Chem. 2000;275:3667–3674. doi: 10.1074/jbc.275.5.3667. PubMed DOI

Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T., Zelezna B. Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 2013;1498:33–40. doi: 10.1016/j.brainres.2012.12.037. PubMed DOI

Hayakawa J., Ohmichi M., Tasaka K., Kanda Y., Adachi K., Nishio Y., Hisamoto K., Mabuchi S., Hinuma S., Murata Y. Regulation of the PRL promoter by Akt through cAMP response element binding protein. Endocrinology. 2002;143:13–22. doi: 10.1210/endo.143.1.8586. PubMed DOI

Franke T.F., Hornik C.P., Segev L., Shostak G.A., Sugimoto C. PI3K/Akt and apoptosis: Size matters. Oncogene. 2003;22:8983–8998. doi: 10.1038/sj.onc.1207115. PubMed DOI

Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis. 2006;9(Suppl 3):309–317. doi: 10.3233/JAD-2006-9S335. PubMed DOI

Wickelgren I. Tracking insulin to the mind. Science. 1998;280:517–519. doi: 10.1126/science.280.5363.517. PubMed DOI

Zhao W., Chen H., Xu H., Moore E., Meiri N., Quon M.J., Alkon D.L. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 1999;274:34893–34902. doi: 10.1074/jbc.274.49.34893. PubMed DOI

Lo T.W., Westwood M.E., McLellan A.C., Selwood T., Thornalley P.J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J. Biol. Chem. 1994;269:32299–32305. PubMed

Tajes M., Eraso-Pichot A., Rubio-Moscardó F., Guivernau B., Bosch-Morató M., Valls-Comamala V., Muñoz F.J. Methylglyoxal reduces mitochondrial potential and activates Bax and caspase-3 in neurons: Implications for Alzheimer’s disease. Neurosci. Lett. 2014;580:78–82. doi: 10.1016/j.neulet.2014.07.047. PubMed DOI

Li X.H., Xie J.Z., Jiang X., Lv B.L., Cheng X.S., Du L.L., Zhang J.Y., Wang J.Z., Zhou X.W. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromolecular Med. 2012;14:338–348. doi: 10.1007/s12017-012-8191-0. PubMed DOI

Chapman C.D., Schioth H.B., Grillo C.A., Benedict C. Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology. 2018;136:196–201. doi: 10.1016/j.neuropharm.2017.11.037. PubMed DOI PMC

Maixnerová J., Špolcová A., Pýchová M., Blechová M., Elbert T., Řezáčová M., Železná B., Maletínská L. Characterization of prolactin-releasing peptide: Binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides. 2011;32:811–817. doi: 10.1016/j.peptides.2010.12.011. PubMed DOI

Holubova M., Hruba L., Neprasova B., Majercikova Z., Lacinova Z., Kunes J., Maletinska L., Zelezna B. Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J. Mol. Endocrinol. 2018;60:85–94. doi: 10.1530/JME-17-0171. PubMed DOI

Korinkova L., Holubova M., Neprasova B., Hruba L., Prazienkova V., Bencze M., Haluzik M., Kunes J., Maletinska L., Zelezna B. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J. Mol. Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI

Varghese B.V., Koohestani F., McWilliams M., Colvin A., Gunewardena S., Kinsey W.H., Nowak R.A., Nothnick W.B., Chennathukuzhi V.M. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc. Natl. Acad. Sci. USA. 2013;110:2187–2192. doi: 10.1073/pnas.1215759110. PubMed DOI PMC

Sauter A., Goldstein M., Engel J., Ueta K. Effect of insulin on central catecholamines. Brain Res. 1983;260:330–333. doi: 10.1016/0006-8993(83)90691-1. PubMed DOI

Yamaguchi A., Tamatani M., Matsuzaki H., Namikawa K., Kiyama H., Vitek M.P., Mitsuda N., Tohyama M. Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J. Biol. Chem. 2001;276:5256–5264. doi: 10.1074/jbc.M008552200. PubMed DOI

Zheng W.H., Kar S., Quirion R. Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol. Pharmacol. 2002;62:225–233. doi: 10.1124/mol.62.2.225. PubMed DOI

Beattie M.S., Li Q., Bresnahan J.C. Cell death and plasticity after experimental spinal cord injury. Prog. Brain Res. 2000;128:9–21. PubMed

Man H.Y., Lin J.W., Ju W.H., Ahmadian G., Liu L., Becker L.E., Sheng M., Wang Y.T. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron. 2000;25:649–662. doi: 10.1016/S0896-6273(00)81067-3. PubMed DOI

Chiu S.L., Chen C.M., Cline H.T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008;58:708–719. doi: 10.1016/j.neuron.2008.04.014. PubMed DOI PMC

Summers S.A., Birnbaum M.J. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem. Soc. Trans. 1997;25:981–988. doi: 10.1042/bst0250981. PubMed DOI

Lee C.C., Huang C.C., Hsu K.S. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology. 2011;61:867–879. doi: 10.1016/j.neuropharm.2011.06.003. PubMed DOI

Xu F., Na L., Li Y., Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020;10:54. doi: 10.1186/s13578-020-00416-0. PubMed DOI PMC

Swiech L., Perycz M., Malik A., Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys. Acta. 2008;1784:116–132. doi: 10.1016/j.bbapap.2007.08.015. PubMed DOI

Jung C.H., Ro S.H., Cao J., Otto N.M., Kim D.H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–1295. doi: 10.1016/j.febslet.2010.01.017. PubMed DOI PMC

Jaworski J., Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 2006;34:205–219. doi: 10.1385/MN:34:3:205. PubMed DOI

Franco R., Martinez-Pinilla E., Navarro G., Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer’s disease. Prog. Neurobiol. 2017;149–150:21–38. doi: 10.1016/j.pneurobio.2017.01.004. PubMed DOI

Nicolia V., Fuso A., Cavallaro R.A., Di Luzio A., Scarpa S. B vitamin deficiency promotes tau phosphorylation through regulation of GSK3beta and PP2A. J. Alzheimers Dis. 2010;19:895–907. doi: 10.3233/JAD-2010-1284. PubMed DOI

Baum L., Hansen L., Masliah E., Saitoh T. Glycogen synthase kinase 3 alteration in alzheimer disease is related to neurofibrillary tangle formation. Mol. Chem. Neuropathol. 1996;29:253–261. doi: 10.1007/BF02815006. PubMed DOI

Plattner F., Angelo M., Giese K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI

Wen A.Y., Sakamoto K.M., Miller L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010;185:6413–6419. doi: 10.4049/jimmunol.1001829. PubMed DOI PMC

Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation: A mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem. Pharmacol. 2012;83:705–714. doi: 10.1016/j.bcp.2011.11.009. PubMed DOI

Sweatt J.D. The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 2001;76:1–10. doi: 10.1046/j.1471-4159.2001.00054.x. PubMed DOI

Wu C.J., Qian X., O’Rourke D.M. Sustained mitogen-activated protein kinase activation is induced by transforming erbB receptor complexes. DNA Cell Biol. 1999;18:731–741. doi: 10.1089/104454999314872. PubMed DOI

Maletinska L., Popelova A., Zelezna B., Bencze M., Kunes J. The impact of anorexigenic peptides in experimental models of Alzheimer’s disease pathology. J. Endocrinol. 2019;240:R47–R72. doi: 10.1530/JOE-18-0532. PubMed DOI

Angeloni C., Zambonin L., Hrelia S. Role of methylglyoxal in Alzheimer’s disease. Biomed. Res. Int. 2014;2014:238485. doi: 10.1155/2014/238485. PubMed DOI PMC

Bellier J., Nokin M.J., Larde E., Karoyan P., Peulen O., Castronovo V., Bellahcene A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019;148:200–211. doi: 10.1016/j.diabres.2019.01.002. PubMed DOI

Sharma M.K., Jalewa J., Hölscher C. Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress. J. Neurochem. 2014;128:459–471. doi: 10.1111/jnc.12469. PubMed DOI

Popelová A., Kákonová A., Hrubá L., Kuneš J., Maletínská L., Železná B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: An in vitro study using SH-SY5Y cells. Physiol. Res. 2018;67:339–346. doi: 10.33549/physiolres.933761. PubMed DOI

Salakou S., Kardamakis D., Tsamandas A.C., Zolota V., Apostolakis E., Tzelepi V., Papathanasopoulos P., Bonikos D.S., Papapetropoulos T., Petsas T., et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007;21:123–132. PubMed

Stickles X.B., Marchion D.C., Bicaku E., Al Sawah E., Abbasi F., Xiong Y., Bou Zgheib N., Boac B.M., Orr B.C., Judson P.L., et al. BAD-mediated apoptotic pathway is associated with human cancer development. Int. J. Mol. Med. 2015;35:1081–1087. doi: 10.3892/ijmm.2015.2091. PubMed DOI PMC

Vogt P.K. Fortuitous convergences: The beginnings of JUN. Nat. Rev. Cancer. 2002;2:465–469. doi: 10.1038/nrc818. PubMed DOI

Du J., Suzuki H., Nagase F., Akhand A.A., Yokoyama T., Miyata T., Kurokawa K., Nakashima I. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase. J. Cell Biochem. 2000;77:333–344. doi: 10.1002/(SICI)1097-4644(20000501)77:2<333::AID-JCB15>3.0.CO;2-Q. PubMed DOI

Leppa S., Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene. 1999;18:6158–6162. doi: 10.1038/sj.onc.1203173. PubMed DOI

Shaulian E., Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002;4:E131–E136. doi: 10.1038/ncb0502-e131. PubMed DOI

Heimfarth L., Loureiro S.O., Pierozan P., de Lima B.O., Reis K.P., Torres E.B., Pessoa-Pureur R. Methylglyoxal-induced cytotoxicity in neonatal rat brain: A role for oxidative stress and MAP kinases. Metab. Brain Dis. 2013;28:429–438. doi: 10.1007/s11011-013-9379-1. PubMed DOI

Pražienková V., Schirmer C., Holubová M., Železná B., Kuneš J., Galas M.C., Maletínská L. Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. J. Alzheimers Dis. 2019;67:1187–1200. doi: 10.3233/JAD-180837. PubMed DOI

Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B., Popelova A., Blechova M., Haluzik M., Zelezna B., et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE. 2017;12:e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC

Maletínská L., Špolcová A., Maixnerová J., Blechová M., Železná B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides. 2011;32:1887–1892. doi: 10.1016/j.peptides.2011.08.011. PubMed DOI

Shipley M.M., Mangold C.A., Szpara M.L. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J. Vis. Exp. 2016:53193. doi: 10.3791/53193. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...