Cellular Signaling and Anti-Apoptotic Effects of Prolactin-Releasing Peptide and Its Analog on SH-SY5Y Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00546S
Grantová Agentura České Republiky
RVO:61388963
Akademie Věd České Republiky
PubMed
32882929
PubMed Central
PMC7503370
DOI
10.3390/ijms21176343
PII: ijms21176343
Knihovny.cz E-zdroje
- Klíčová slova
- SH-SY5Y, cellular signaling, inhibitors, methylglyoxal, neuroprotection, primary neuronal culture, prolactin-releasing peptide,
- MeSH
- apoptóza * MeSH
- hormon uvolňující prolaktin chemie farmakologie MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- neuroblastom farmakoterapie metabolismus patologie MeSH
- neuropeptidy chemie farmakologie MeSH
- neuroprotektivní látky chemie farmakologie MeSH
- proteiny regulující apoptózu metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hormon uvolňující prolaktin MeSH
- neuropeptidy MeSH
- neuroprotektivní látky MeSH
- proteiny regulující apoptózu MeSH
Prolactin-releasing peptide (PrRP), a natural ligand for the GPR10 receptor, is a neuropeptide with anorexigenic and antidiabetic properties. Due to its role in the regulation of food intake, PrRP is a potential drug for obesity treatment and associated type 2 diabetes mellitus (T2DM). Recently, the neuroprotective effects of lipidized PrRP analogs have been proven. In this study, we focused on the molecular mechanisms of action of natural PrRP31 and its lipidized analog palm11-PrRP31 in the human neuroblastoma cell line SH-SY5Y to describe their cellular signaling and possible anti-apoptotic properties. PrRP31 significantly upregulated the phosphoinositide-3 kinase-protein kinase B/Akt (PI3K-PKB/Akt) and extracellular signal-regulated kinase/cAMP response element-binding protein (ERK-CREB) signaling pathways that promote metabolic cell survival and growth. In addition, we proved via protein kinase inhibitors that activation of signaling pathways is mediated specifically by PrRP31 and its palmitoylated analog. Furthermore, the potential neuroprotective properties were studied through activation of anti-apoptotic pathways of PrRP31 and palm11-PrRP31 using the SH-SY5Y cell line and rat primary neuronal culture stressed with toxic methylglyoxal (MG). The results indicate increased viability of the cells treated with PrRP and palm11-PrRP31 and a reduced degree of apoptosis induced by MG, suggesting their potential use in the treatment of neurological disorders.
1st Faculty of Medicine Charles University Prague 12108 Czech Republic
Institute of Organic Chemistry and Biochemistry AS CR Prague 16000 Czech Republic
Zobrazit více v PubMed
Bjursell M., Lenneras M., Goransson M., Elmgren A., Bohlooly Y.M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 2007;363:633–638. doi: 10.1016/j.bbrc.2007.09.016. PubMed DOI
Pražienková V., Popelová A., Kuneš J., Maletínská L. Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int. J. Mol. Sci. 2019;20:5297. doi: 10.3390/ijms20215297. PubMed DOI PMC
Lawrence C.B., Celsi F., Brennand J., Luckman S.M. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 2000;3:645–646. doi: 10.1038/76597. PubMed DOI
Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., Kitada C., Masuo Y., Asano T., Matsumoto H., et al. A prolactin-releasing peptide in the brain. Nature. 1998;393:272–276. doi: 10.1038/30515. PubMed DOI
Kuneš J., Pražienková V., Popelová A., Mikulášková B., Zemenová J., Maletínská L. Prolactin-releasing peptide: A new tool for obesity treatment. J. Endocrinol. 2016;230:R51–R58. doi: 10.1530/JOE-16-0046. PubMed DOI
Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M., Spolcova A., Mikulaskova B., Blechova M., Sykora D., et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI
Holubova M., Zemenova J., Mikulaskova B., Panajotova V., Stohr J., Haluzik M., Kunes J., Zelezna B., Maletinska L. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 2016;229:85–96. doi: 10.1530/JOE-15-0519. PubMed DOI
Mikulaskova B., Holubova M., Prazienkova V., Zemenova J., Hruba L., Haluzik M., Zelezna B., Kunes J., Maletinska L. Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutr. Diabetes. 2018;8:5. doi: 10.1038/s41387-017-0015-8. PubMed DOI PMC
Glenner G.G., Wong C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984;120:885–890. doi: 10.1016/S0006-291X(84)80190-4. PubMed DOI
Buee L., Bussiere T., Buee-Scherrer V., Delacourte A., Hof P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 2000;33:95–130. doi: 10.1016/S0165-0173(00)00019-9. PubMed DOI
Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., Xu X.J., Wands J.R., de la Monte S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis. 2005;7:63–80. doi: 10.3233/JAD-2005-7107. PubMed DOI
de la Monte S.M., Wands J.R. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J. Diabetes Sci. Technol. 2008;2:1101–1113. doi: 10.1177/193229680800200619. PubMed DOI PMC
Takeda S., Sato N., Uchio-Yamada K., Sawada K., Kunieda T., Takeuchi D., Kurinami H., Shinohara M., Rakugi H., Morishita R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA. 2010;107:7036–7041. doi: 10.1073/pnas.1000645107. PubMed DOI PMC
Liu Y., Liu F., Grundke-Iqbal I., Iqbal K., Gong C.X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol. 2011;225:54–62. doi: 10.1002/path.2912. PubMed DOI PMC
Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J., Haluzik M., Zelezna B., Galas M.C., Maletinska L. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 2015;45:823–835. doi: 10.3233/JAD-143150. PubMed DOI
Schindowski K., Bretteville A., Leroy K., Begard S., Brion J.P., Hamdane M., Buee L. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am. J. Pathol. 2006;169:599–616. doi: 10.2353/ajpath.2006.060002. PubMed DOI PMC
Popelova A., Prazienkova V., Neprasova B., Kasperova B.J., Hruba L., Holubova M., Zemenova J., Blum D., Zelezna B., Galas M.C., et al. Novel Lipidized Analog of Prolactin-Releasing Peptide Improves Memory Impairment and Attenuates Hyperphosphorylation of Tau Protein in a Mouse Model of Tauopathy. J. Alzheimers Dis. 2018;62:1725–1736. doi: 10.3233/JAD-171041. PubMed DOI
Holubová M., Hrubá L., Popelová A., Bencze M., Pražienková V., Gengler S., Kratochvílová H., Haluzík M., Železná B., Kuneš J., et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology. 2019;144:377–387. doi: 10.1016/j.neuropharm.2018.11.002. PubMed DOI
Kimura A., Ohmichi M., Tasaka K., Kanda Y., Ikegami H., Hayakawa J., Hisamoto K., Morishige K., Hinuma S., Kurachi H., et al. Prolactin-releasing peptide activation of the prolactin promoter is differentially mediated by extracellular signal-regulated protein kinase and c-Jun N-terminal protein kinase. J. Biol. Chem. 2000;275:3667–3674. doi: 10.1074/jbc.275.5.3667. PubMed DOI
Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T., Zelezna B. Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 2013;1498:33–40. doi: 10.1016/j.brainres.2012.12.037. PubMed DOI
Hayakawa J., Ohmichi M., Tasaka K., Kanda Y., Adachi K., Nishio Y., Hisamoto K., Mabuchi S., Hinuma S., Murata Y. Regulation of the PRL promoter by Akt through cAMP response element binding protein. Endocrinology. 2002;143:13–22. doi: 10.1210/endo.143.1.8586. PubMed DOI
Franke T.F., Hornik C.P., Segev L., Shostak G.A., Sugimoto C. PI3K/Akt and apoptosis: Size matters. Oncogene. 2003;22:8983–8998. doi: 10.1038/sj.onc.1207115. PubMed DOI
Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis. 2006;9(Suppl 3):309–317. doi: 10.3233/JAD-2006-9S335. PubMed DOI
Wickelgren I. Tracking insulin to the mind. Science. 1998;280:517–519. doi: 10.1126/science.280.5363.517. PubMed DOI
Zhao W., Chen H., Xu H., Moore E., Meiri N., Quon M.J., Alkon D.L. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 1999;274:34893–34902. doi: 10.1074/jbc.274.49.34893. PubMed DOI
Lo T.W., Westwood M.E., McLellan A.C., Selwood T., Thornalley P.J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J. Biol. Chem. 1994;269:32299–32305. PubMed
Tajes M., Eraso-Pichot A., Rubio-Moscardó F., Guivernau B., Bosch-Morató M., Valls-Comamala V., Muñoz F.J. Methylglyoxal reduces mitochondrial potential and activates Bax and caspase-3 in neurons: Implications for Alzheimer’s disease. Neurosci. Lett. 2014;580:78–82. doi: 10.1016/j.neulet.2014.07.047. PubMed DOI
Li X.H., Xie J.Z., Jiang X., Lv B.L., Cheng X.S., Du L.L., Zhang J.Y., Wang J.Z., Zhou X.W. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromolecular Med. 2012;14:338–348. doi: 10.1007/s12017-012-8191-0. PubMed DOI
Chapman C.D., Schioth H.B., Grillo C.A., Benedict C. Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology. 2018;136:196–201. doi: 10.1016/j.neuropharm.2017.11.037. PubMed DOI PMC
Maixnerová J., Špolcová A., Pýchová M., Blechová M., Elbert T., Řezáčová M., Železná B., Maletínská L. Characterization of prolactin-releasing peptide: Binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides. 2011;32:811–817. doi: 10.1016/j.peptides.2010.12.011. PubMed DOI
Holubova M., Hruba L., Neprasova B., Majercikova Z., Lacinova Z., Kunes J., Maletinska L., Zelezna B. Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J. Mol. Endocrinol. 2018;60:85–94. doi: 10.1530/JME-17-0171. PubMed DOI
Korinkova L., Holubova M., Neprasova B., Hruba L., Prazienkova V., Bencze M., Haluzik M., Kunes J., Maletinska L., Zelezna B. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J. Mol. Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI
Varghese B.V., Koohestani F., McWilliams M., Colvin A., Gunewardena S., Kinsey W.H., Nowak R.A., Nothnick W.B., Chennathukuzhi V.M. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc. Natl. Acad. Sci. USA. 2013;110:2187–2192. doi: 10.1073/pnas.1215759110. PubMed DOI PMC
Sauter A., Goldstein M., Engel J., Ueta K. Effect of insulin on central catecholamines. Brain Res. 1983;260:330–333. doi: 10.1016/0006-8993(83)90691-1. PubMed DOI
Yamaguchi A., Tamatani M., Matsuzaki H., Namikawa K., Kiyama H., Vitek M.P., Mitsuda N., Tohyama M. Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J. Biol. Chem. 2001;276:5256–5264. doi: 10.1074/jbc.M008552200. PubMed DOI
Zheng W.H., Kar S., Quirion R. Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol. Pharmacol. 2002;62:225–233. doi: 10.1124/mol.62.2.225. PubMed DOI
Beattie M.S., Li Q., Bresnahan J.C. Cell death and plasticity after experimental spinal cord injury. Prog. Brain Res. 2000;128:9–21. PubMed
Man H.Y., Lin J.W., Ju W.H., Ahmadian G., Liu L., Becker L.E., Sheng M., Wang Y.T. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron. 2000;25:649–662. doi: 10.1016/S0896-6273(00)81067-3. PubMed DOI
Chiu S.L., Chen C.M., Cline H.T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008;58:708–719. doi: 10.1016/j.neuron.2008.04.014. PubMed DOI PMC
Summers S.A., Birnbaum M.J. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem. Soc. Trans. 1997;25:981–988. doi: 10.1042/bst0250981. PubMed DOI
Lee C.C., Huang C.C., Hsu K.S. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology. 2011;61:867–879. doi: 10.1016/j.neuropharm.2011.06.003. PubMed DOI
Xu F., Na L., Li Y., Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020;10:54. doi: 10.1186/s13578-020-00416-0. PubMed DOI PMC
Swiech L., Perycz M., Malik A., Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys. Acta. 2008;1784:116–132. doi: 10.1016/j.bbapap.2007.08.015. PubMed DOI
Jung C.H., Ro S.H., Cao J., Otto N.M., Kim D.H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–1295. doi: 10.1016/j.febslet.2010.01.017. PubMed DOI PMC
Jaworski J., Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 2006;34:205–219. doi: 10.1385/MN:34:3:205. PubMed DOI
Franco R., Martinez-Pinilla E., Navarro G., Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer’s disease. Prog. Neurobiol. 2017;149–150:21–38. doi: 10.1016/j.pneurobio.2017.01.004. PubMed DOI
Nicolia V., Fuso A., Cavallaro R.A., Di Luzio A., Scarpa S. B vitamin deficiency promotes tau phosphorylation through regulation of GSK3beta and PP2A. J. Alzheimers Dis. 2010;19:895–907. doi: 10.3233/JAD-2010-1284. PubMed DOI
Baum L., Hansen L., Masliah E., Saitoh T. Glycogen synthase kinase 3 alteration in alzheimer disease is related to neurofibrillary tangle formation. Mol. Chem. Neuropathol. 1996;29:253–261. doi: 10.1007/BF02815006. PubMed DOI
Plattner F., Angelo M., Giese K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI
Wen A.Y., Sakamoto K.M., Miller L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010;185:6413–6419. doi: 10.4049/jimmunol.1001829. PubMed DOI PMC
Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation: A mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem. Pharmacol. 2012;83:705–714. doi: 10.1016/j.bcp.2011.11.009. PubMed DOI
Sweatt J.D. The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 2001;76:1–10. doi: 10.1046/j.1471-4159.2001.00054.x. PubMed DOI
Wu C.J., Qian X., O’Rourke D.M. Sustained mitogen-activated protein kinase activation is induced by transforming erbB receptor complexes. DNA Cell Biol. 1999;18:731–741. doi: 10.1089/104454999314872. PubMed DOI
Maletinska L., Popelova A., Zelezna B., Bencze M., Kunes J. The impact of anorexigenic peptides in experimental models of Alzheimer’s disease pathology. J. Endocrinol. 2019;240:R47–R72. doi: 10.1530/JOE-18-0532. PubMed DOI
Angeloni C., Zambonin L., Hrelia S. Role of methylglyoxal in Alzheimer’s disease. Biomed. Res. Int. 2014;2014:238485. doi: 10.1155/2014/238485. PubMed DOI PMC
Bellier J., Nokin M.J., Larde E., Karoyan P., Peulen O., Castronovo V., Bellahcene A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019;148:200–211. doi: 10.1016/j.diabres.2019.01.002. PubMed DOI
Sharma M.K., Jalewa J., Hölscher C. Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress. J. Neurochem. 2014;128:459–471. doi: 10.1111/jnc.12469. PubMed DOI
Popelová A., Kákonová A., Hrubá L., Kuneš J., Maletínská L., Železná B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: An in vitro study using SH-SY5Y cells. Physiol. Res. 2018;67:339–346. doi: 10.33549/physiolres.933761. PubMed DOI
Salakou S., Kardamakis D., Tsamandas A.C., Zolota V., Apostolakis E., Tzelepi V., Papathanasopoulos P., Bonikos D.S., Papapetropoulos T., Petsas T., et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007;21:123–132. PubMed
Stickles X.B., Marchion D.C., Bicaku E., Al Sawah E., Abbasi F., Xiong Y., Bou Zgheib N., Boac B.M., Orr B.C., Judson P.L., et al. BAD-mediated apoptotic pathway is associated with human cancer development. Int. J. Mol. Med. 2015;35:1081–1087. doi: 10.3892/ijmm.2015.2091. PubMed DOI PMC
Vogt P.K. Fortuitous convergences: The beginnings of JUN. Nat. Rev. Cancer. 2002;2:465–469. doi: 10.1038/nrc818. PubMed DOI
Du J., Suzuki H., Nagase F., Akhand A.A., Yokoyama T., Miyata T., Kurokawa K., Nakashima I. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase. J. Cell Biochem. 2000;77:333–344. doi: 10.1002/(SICI)1097-4644(20000501)77:2<333::AID-JCB15>3.0.CO;2-Q. PubMed DOI
Leppa S., Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene. 1999;18:6158–6162. doi: 10.1038/sj.onc.1203173. PubMed DOI
Shaulian E., Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002;4:E131–E136. doi: 10.1038/ncb0502-e131. PubMed DOI
Heimfarth L., Loureiro S.O., Pierozan P., de Lima B.O., Reis K.P., Torres E.B., Pessoa-Pureur R. Methylglyoxal-induced cytotoxicity in neonatal rat brain: A role for oxidative stress and MAP kinases. Metab. Brain Dis. 2013;28:429–438. doi: 10.1007/s11011-013-9379-1. PubMed DOI
Pražienková V., Schirmer C., Holubová M., Železná B., Kuneš J., Galas M.C., Maletínská L. Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. J. Alzheimers Dis. 2019;67:1187–1200. doi: 10.3233/JAD-180837. PubMed DOI
Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B., Popelova A., Blechova M., Haluzik M., Zelezna B., et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE. 2017;12:e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC
Maletínská L., Špolcová A., Maixnerová J., Blechová M., Železná B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides. 2011;32:1887–1892. doi: 10.1016/j.peptides.2011.08.011. PubMed DOI
Shipley M.M., Mangold C.A., Szpara M.L. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J. Vis. Exp. 2016:53193. doi: 10.3791/53193. PubMed DOI PMC