Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29339795
PubMed Central
PMC5851428
DOI
10.1038/s41387-017-0015-8
PII: 10.1038/s41387-017-0015-8
Knihovny.cz E-zdroje
- MeSH
- glukagon krev MeSH
- glukózový toleranční test MeSH
- hormon uvolňující prolaktin aplikace a dávkování analogy a deriváty farmakologie terapeutické užití MeSH
- hypertenze krev farmakoterapie MeSH
- inzulin krev metabolismus MeSH
- inzulinová rezistence MeSH
- krevní glukóza metabolismus MeSH
- krevní tlak účinky léků MeSH
- lipidy krev MeSH
- metabolický syndrom * krev farmakoterapie metabolismus MeSH
- mozek účinky léků metabolismus MeSH
- obezita * krev farmakoterapie MeSH
- porucha glukózové tolerance * krev farmakoterapie MeSH
- potkani inbrední SHR MeSH
- proteiny insulinového receptorového substrátu metabolismus MeSH
- tělesná hmotnost účinky léků MeSH
- tuková tkáň účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukagon MeSH
- hormon uvolňující prolaktin MeSH
- inzulin MeSH
- krevní glukóza MeSH
- lipidy MeSH
- proteiny insulinového receptorového substrátu MeSH
BACKGROUND/OBJECTIVES: Prolactin-releasing peptide (PrRP) has a potential to decrease food intake and ameliorate obesity, but is ineffective after peripheral administration. We have previously shown that our novel lipidized analogs PrRP enhances its stability in the circulation and enables its central effect after peripheral application. The purpose of this study was to explore if sub-chronic administration of novel PrRP analog palmitoylated in position 11 (palm11-PrRP31) to Koletsky-spontaneously hypertensive obese rats (SHROB) could lower body weight and glucose intolerance as well as other metabolic parameters. SUBJECTS/METHODS: The SHROB rats (n = 16) were used for this study and age-matched hypertensive lean SHR littermates (n = 16) served as controls. Palm11-PrRP31 was administered intraperitoneally to SHR and SHROB (n = 8) at a dose of 5 mg/kg once-daily for 3 weeks. During the dosing period food intake and body weight were monitored. At the end of the experiment the oral glucose tolerance test was performed; plasma and tissue samples were collected. Thereafter, arterial blood pressure was measured. RESULTS: At the end of the experiment, vehicle-treated SHROB rats showed typical metabolic syndrome parameters, including obesity, glucose intolerance, dyslipidemia, and hypertension. Peripheral treatment with palm11-PrRP31 progressively decreased the body weight of SHR rats but not SHROB rats, though glucose tolerance was markedly improved in both strains. Moreover, in SHROB palm11-PrRP31 ameliorated the HOMA index, insulin/glucagon ratio, and increased insulin receptor substrate 1 and 2 expression in fat and insulin signaling in the hypothalamus, while it had no effect on blood pressure. CONCLUSIONS: We demonstrated that our new lipidized PrRP analog is capable of improving glucose tolerance in obese SHROB rats after peripheral application, suggesting that its effect on glucose metabolism is independent of leptin signaling and body weight lowering. These data suggest that this analog has the potential to be a compound with both anti-obesity and glucose-lowering properties.
Institute of Organic Chemistry and Biochemistry AS CR Prague Czech Republic
Institute of Physiology AS CR Prague Czech Republic
University of Chemistry and Technology Prague Czech Republic
Zobrazit více v PubMed
Malavolta L, Cabral FR. Peptides: important tools for the treatment of central nervous system disorders. Neuropeptides. 2011;45:309–316. doi: 10.1016/j.npep.2011.03.001. PubMed DOI
Kuneš J, et al. Prolactin-releasing peptide: a new tool for obesity treatment. J. Endocrinol. 2016;230:R51–R58. doi: 10.1530/JOE-16-0046. PubMed DOI
Gault VA, Kerr BD, Harriott P, Flatt PR. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with type 2 diabetes and obesity. Clin. Sci. (Lond.) 2011;121:107–117. doi: 10.1042/CS20110006. PubMed DOI
Lau J, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015;58:7370–7380. doi: 10.1021/acs.jmedchem.5b00726. PubMed DOI
Havelund S, et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm. Res. 2004;21:1498–1504. doi: 10.1023/B:PHAM.0000036926.54824.37. PubMed DOI
Maletinska L, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. (Lond.) 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI
Mikulaskova B, et al. Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides. 2016;75:109–117. doi: 10.1016/j.peptides.2015.11.005. PubMed DOI
Holubova M, et al. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 2016;229:85–96. doi: 10.1530/JOE-15-0519. PubMed DOI
Prazienkova V, et al. Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C-terminal aromatic ring. J. Physiol. Pharmacol. 2016;67:121–128. PubMed
Ishizuka T, et al. Phenotypic consequences of a nonsense mutation in the leptin receptor gene (fak) in obese spontaneously hypertensive Koletsky rats (SHROB) J. Nutr. 1998;128:2299–2306. PubMed
Pražienková, V. et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE (2017) (in press). PubMed PMC
Koletsky S. Obese spontaneously hypertensive rats—a model for study of atherosclerosis. Exp. Mol. Pathol. 1973;19:53–60. doi: 10.1016/0014-4800(73)90040-3. PubMed DOI
Xu C, et al. Metabolic dysregulation in the SHROB rat reflects abnormal expression of transcription factors and enzymes that regulate carbohydrate metabolism. J. Nutr. Biochem. 2008;19:305–312. doi: 10.1016/j.jnutbio.2007.05.001. PubMed DOI
Takaya K, et al. Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat. Genet. 1996;14:130–131. doi: 10.1038/ng1096-130. PubMed DOI
Friedman JE, et al. Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am. J. Physiol. 1997;273:E1014–E1023. PubMed
Spolcova A, et al. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 2015;45:823–835. PubMed
Papáčková Z, Daňková H, Páleníčková E, Kazdová L, Cahová M. Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol. Res. 2012;61(Suppl 2):S67–S76. PubMed
Lansang MC, Williams GH, Carroll JS. Correlation between the glucose clamp technique and the homeostasis model assessment in hypertension. Am. J. Hypertens. 2001;14:51–53. doi: 10.1016/S0895-7061(00)01229-2. PubMed DOI
Koletsky RJ, Boccia J, Ernsberger P. Acceleration of renal disease in obese SHR by exacerbation of hypertension. Clin. Exp. Pharmacol. Physiol. Suppl. 1995;22:S254–S256. doi: 10.1111/j.1440-1681.1995.tb02905.x. PubMed DOI
Chen B, et al. Sitagliptin lowers glucagon and improves glucose tolerance in prediabetic obese SHROB rats. Exp. Biol. Med. (Maywood) 2011;236:309–314. doi: 10.1258/ebm.2010.010161. PubMed DOI
Velliquette RA, Koletsky RJ, Ernsberger P. Plasma glucagon and free fatty acid responses to a glucose load in the obese spontaneous hypertensive rat (SHROB) model of metabolic syndrome X. Exp. Biol. Med. (Maywood) 2002;227:164–170. doi: 10.1177/153537020222700303. PubMed DOI
Keen-Rhinehart E, Kalra SP, Kalra PS. AAV-mediated leptin receptor installation improves energy balance and the reproductive status of obese female Koletsky rats. Peptides. 2005;26:2567–2578. doi: 10.1016/j.peptides.2005.05.027. PubMed DOI
Keen Rhinehart E, Kalra SP, Kalra PS. Neuropeptidergic characterization of the leptin receptor mutated obese Koletsky rat. Regul. Pept. 2004;119:3–10. doi: 10.1016/j.regpep.2003.12.016. PubMed DOI
Montagner A, et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 2016;65:1202–1214. doi: 10.1136/gutjnl-2015-310798. PubMed DOI PMC
Vatner DF, et al. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc. Natl. Acad. Sci. USA. 2015;112:1143–1148. doi: 10.1073/pnas.1423952112. PubMed DOI PMC
Maixnerová J, et al. Characterization of prolactin-releasing peptide: binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides. 2011;32:811–817. doi: 10.1016/j.peptides.2010.12.011. PubMed DOI
Thon M, Hosoi T, Ozawa K. Possible integrative actions of leptin and insulin signaling in the hypothalamus targeting energy homeostasis. Front Endocrinol. (Lausanne) 2016;7:138. PubMed PMC
Hayakawa J, et al. Regulation of the PRL promoter by Akt through cAMP response element binding protein. Endocrinology. 2002;143:13–22. doi: 10.1210/endo.143.1.8586. PubMed DOI
German J, et al. Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology. 2009;150:4502–4511. doi: 10.1210/en.2009-0445. PubMed DOI PMC
Ernsberger P, Johnson JL, Rosenthal T, Mirelman D, Koletsky RJ. Therapeutic actions of allylmercaptocaptopril and captopril in a rat model of metabolic syndrome. Am. J. Hypertens. 2007;20:866–874. doi: 10.1016/j.amjhyper.2007.02.015. PubMed DOI PMC
Rong X, et al. Irbesartan treatment up-regulates hepatic expression of PPARalpha and its target genes in obese Koletsky (fa(k)/fa(k)) rats: a link to amelioration of hypertriglyceridaemia. Br. J. Pharmacol. 2010;160:1796–1807. doi: 10.1111/j.1476-5381.2010.00835.x. PubMed DOI PMC
Zhao M, et al. Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats. Diabetes Obes. Metab. 2011;13:1123–1129. doi: 10.1111/j.1463-1326.2011.01471.x. PubMed DOI
Velliquette RA, Friedman JE, Shao J, Zhang BB, Ernsberger P. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X. J. Pharmacol. Exp. Ther. 2005;314:422–430. doi: 10.1124/jpet.104.080606. PubMed DOI
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011;11:85–97. doi: 10.1038/nri2921. PubMed DOI PMC
Ouchi N, Ohashi K, Shibata R, Murohara T. Adipocytokines and obesity-linked disorders. Nagoya J. Med. Sci. 2012;74:19–30. PubMed PMC
Wang X, et al. Variability in Zucker diabetic fatty rats: differences in disease progression in hyperglycemic and normoglycemic animals. Diabetes Metab. Syndr. Obes. 2014;7:531–541. PubMed PMC
NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties