Subtyping Options for Microsporum canis Using Microsatellites and MLST: A Case Study from Southern Italy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
204069
Charles University Research Centre
RVO: 61388971
Czech Academy of Sciences Long-term Research Development Project
PubMed
35055952
PubMed Central
PMC8780581
DOI
10.3390/pathogens11010004
PII: pathogens11010004
Knihovny.cz E-resources
- Keywords
- genetic diversity, microsatellite typing, multilocus sequence typing, population structure, zoonotic infections, zoophilic dermatophytes,
- Publication type
- Journal Article MeSH
Microsporum canis is considered one of the most common zoophilic dermatophyte species causing infections in animals and humans worldwide. However, molecular epidemiological studies on this dermatophyte are still rare. In this study, we aimed to analyse the population structure and relationships between M. canis strains (n = 66) collected in southern Italy and those isolated from symptomatic and asymptomatic animals (cats, dogs and rabbits) and humans. For subtyping purposes, using multilocus sequence typing (MLST) and multilocus microsatellite typing (MLMT), we first used a limited set of strains to screen for variability. No intraspecies variability was detected in six out of the eight reference genes tested and only the ITS and IGS regions showed two and three sequence genotypes, respectively, resulting in five MLST genotypes. All of eight genes were, however, useful for discrimination among M. canis, M. audouinii and M. ferrugineum. In total, eighteen microsatellite genotypes (A-R) were recognized using MLMT based on six loci, allowing a subdivision of strains into two clusters based on the Bayesian iterative algorithm. Six MLMT genotypes were from multiple host species, while 12 genotypes were found only in one host. There were no statistically significant differences between clusters in terms of host spectrum and the presence or absence of lesions. Our results confirmed that the MLST approach is not useful for detailed subtyping and examining the population structure of M. canis, while microsatellite analysis is a powerful tool for conducting surveillance studies and gaining insight into the epidemiology of infections due to this pathogen.
Department of Botany Faculty of Science Charles University 12801 Prague Czech Republic
Department of Veterinary Pathology and Microbiology University of Nigeria Nsukka 410001 Nigeria
Dipartimento di Medicina Veterinaria Università degli Studi Aldo Moro 70010 Bari Italy
Faculty of Veterinary Sciences Bu Ali Sina University Hamedan 6517658978 Iran
See more in PubMed
Uhrlaß S., Krüger C., Nenoff P. Microsporum canis: Current data on the prevalence of the zoophilic dermatophyte in central Germany. Hautarzt. 2015;66:855–862. doi: 10.1007/s00105-015-3697-7. PubMed DOI
Aneke C.I., Otranto D., Cafarchia C. Therapy and antifungal susceptibility profile of Microsporum canis. J. Fungi. 2018;4:107. doi: 10.3390/jof4030107. PubMed DOI PMC
Sharma R., De Hoog G.S., Presber W., Gräser Y. Virulent genotype of Microsporum canis is responsible for the majority of human infections. J. Med. Microbiol. 2007;56:1377–1385. doi: 10.1099/jmm.0.47136-0. PubMed DOI
Pasquetti M., Peano A., Soglia D., Min A.R.M., Pankewitz F., Ohst T., Gräser Y. Development and validation of a microsatellite marker-based method for tracing infections by Microsporum canis. J. Dermatol. Sci. 2013;70:123–129. doi: 10.1016/j.jdermsci.2013.01.003. PubMed DOI
Cafarchia C., Romito D., Capelli G., Guillot J., Otranto D. Isolation of Microsporum canis from the hair coat of pet dogs and cats belonging to owners diagnosed with M. canis tinea corporis. Vet. Dermatol. 2006;17:327–333. doi: 10.1111/j.1365-3164.2006.00533.x. PubMed DOI
Gräser Y., Frohlich J., Presber W., de Hoog G.S. Microsatellite markers reveal geographic population differentiation in Trichophyton rubrum. J. Med. Microbiol. 2007;56:1058–1065. doi: 10.1099/jmm.0.47138-0. PubMed DOI
Abdel-Rahman S.M. Strain differentiation of dermatophytes. Mycopathologia. 2008;166:319–333. doi: 10.1007/s11046-008-9108-1. PubMed DOI
Mochizuki T., Takeda K., Anzawa K. Molecular markers useful for intraspecies subtyping and strain differentiation of dermatophytes. Mycopathologia. 2017;182:57–65. doi: 10.1007/s11046-016-0041-4. PubMed DOI
Taylor J.W., Hann-Soden C., Branco S., Sylvain I., Ellison C.E. Clonal reproduction in fungi. Proc. Natl. Acad. Sci. USA. 2015;112:8901–8908. doi: 10.1073/pnas.1503159112. PubMed DOI PMC
Dobrowolska A., Debska J., Kozlowska M., Staczek P. Strains differentiation of Microsporum canis by RAPD analysis using (GACA)4 and (ACA)5 primers. Pol. J. Microbiol. 2011;60:145–148. doi: 10.33073/pjm-2011-020. PubMed DOI
Čmoková A., Rezaei-Matehkolaei A., Kuklová I., Kolařík M., Shamsizadeh F., Ansari S., Gharaghani M., Miňovská V., Najafzadeh M.J., Nouripour-Sisakht S. Discovery of new Trichophyton members, T. persicum and T. spiraliforme spp. nov., as a cause of highly inflammatory tinea cases in Iran and Czechia. Microbiol. Spectr. 2021;2:e0028421. doi: 10.1128/Spectrum.00284-21. PubMed DOI PMC
Čmoková A., Kolařík M., Dobiáš R., Hoyer L.L., Janouškovcová H., Kano R., Kuklová I., Lysková P., Machová L., Maier T., et al. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers. 2020;104:333–387. doi: 10.1007/s13225-020-00465-3. DOI
de Valk H.A., Meis J.F.G.M., Klaassen C.H.W. Microsatellite based typing of Aspergillus fumigatus: Strengths, pitfalls and solutions. J. Microbiol. Methods. 2007;69:268–272. doi: 10.1016/j.mimet.2007.01.009. PubMed DOI
de Groot T., Puts Y., Berrio I., Chowdhary A., Meis J.F. Development of Candida auris short tandem repeat typing and its application to a global collection of isolates. MBio. 2020;11:e02971-19. doi: 10.1128/mBio.02971-19. PubMed DOI PMC
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Rezaei-Matehkolaei A., Makimura K., de Hoog G.S., Shidfar M.R., Satoh K., Najafzadeh M.J., Mirhendi H. Multilocus differentiation of the related dermatophytes Microsporum canis, Microsporum ferrugineum and Microsporum audouinii. J. Med. Microbiol. 2012;61:57–63. doi: 10.1099/jmm.0.036541-0. PubMed DOI
Gräser Y., Scott J., Summerbell R. The new species concept in dermatophytes—a polyphasic approach. Mycopathologia. 2008;166:239–256. doi: 10.1007/s11046-008-9099-y. PubMed DOI
White T.C., Oliver B.G., Gräser Y., Henn M.R. Generating and testing molecular hypotheses in the dermatophytes. Eukaryot. Cell. 2008;7:1238–1245. doi: 10.1128/EC.00100-08. PubMed DOI PMC
da Costa F.V., Farias M.R., Bier D., de Andrade C.P., de Castro L.A., da Silva S.C., Ferreiro L. Genetic variability in Microsporum canis isolated from cats, dogs and humans in Brazil. Mycoses. 2013;56:582–588. doi: 10.1111/myc.12078. PubMed DOI
Watanabe J., Anzawa K., Mochizuki T. Molecular Epidemiology of Japanese isolates of Microsporum canis based on multilocus microsatellite typing fragment analysis. Jpn. J. Infect. Dis. 2017;70:544–548. doi: 10.7883/yoken.JJID.2016.424. PubMed DOI
Hubka V., Nováková A., Jurjević Ž., Sklenář F., Frisvad J.C., Houbraken J., Arendrup M.C., Jørgensen K.M., Siqueira J.P.Z., Gené J., et al. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of A. dobrogensis sp. nov. Int. J. Syst. Evol. Microbiol. 2018;68:995–1011. doi: 10.1099/ijsem.0.002583. PubMed DOI
Sklenář F., Jurjević Ž., Houbraken J., Kolařík M., Arendrup M.C., Jørgensen K.M., Siqueira J.P.Z., Gené J., Yaguchi T., Ezekiel C.N., et al. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and proposal of four new species. Stud. Mycol. 2021;99:100120. doi: 10.1016/j.simyco.2021.100120. PubMed DOI PMC
Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Martins W.S., Lucas D.C.S., de Souza Neves K.F., Bertioli D.J. WebSat-A web software for microsatellite marker development. Bioinformation. 2009;3:282–283. doi: 10.6026/97320630003282. PubMed DOI PMC
Schuelke M. An economic method for the fuorescent labeling of PCR fragments. Nat. Biotechnol. 2000;18:233. doi: 10.1038/72708. PubMed DOI
Alberto F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 2009;100:394–397. doi: 10.1093/jhered/esn110. PubMed DOI
Huson D.H. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics. 1998;14:68–73. doi: 10.1093/bioinformatics/14.1.68. PubMed DOI
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Ehrich D. AFLPdat: A collection of R functions for convenient handling of AFLP data. Mol. Ecol. Notes. 2006;6:603–604. doi: 10.1111/j.1471-8286.2006.01380.x. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.
Excofer L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. doi: 10.1093/genetics/131.2.479. PubMed DOI PMC
Schneider S., Roessli D., Excofer L. ARLEQUIN: A Software for Population Genetics Data Analysis. Volume 2 University of Geneva; Geneva, Switzerland: 2000. Version 2.000.
Agapow P.M., Burt A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes. 2001;1:101–102. doi: 10.1046/j.1471-8278.2000.00014.x. DOI
Burt A., Carter D.A., Koenig G.L., White T.J., Taylor J.W. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc. Natl. Acad. Sci. USA. 1996;93:770–773. doi: 10.1073/pnas.93.2.770. PubMed DOI PMC
Nei M. Molecular Evolutionary Genetics. Columbia University Press; New York, NY, USA: 1987.
Kosman E. Nei’s gene diversity and the index of average differences are identical measures of diversity within populations. Plant Pathol. 2003;52:533–535. doi: 10.1046/j.1365-3059.2003.00923.x. DOI
Schonswetter P., Tribsch A. Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae) Taxon. 2005;54:725–732. doi: 10.2307/25065429. DOI
White T.J., Bruns T., Lee S., Taylor J.W., Innis M.A., Gelfand D.H., Sninsky J. PCR Protocols: A Guide to Methods and Applications. Academic Press Inc.; New York, NY, USA: 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322.
Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI
Kumar M., Shukla P.K. Use of PCR targeting of internal transcribed spacer regions and single-stranded conformation polymorphism analysis of sequence variation in different regions of rRNA genes in fungi for rapid diagnosis of mycotic keratitis. J. Clin. Microbiol. 2005;43:662–668. doi: 10.1128/JCM.43.2.662-668.2005. PubMed DOI PMC
Glass N.L., Donaldson G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995;61:1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995. PubMed DOI PMC
Mirhendi H., Makimura K., de Hoog G.S. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med. Mycol. 2015;53:215–224. doi: 10.1093/mmy/myu088. PubMed DOI
Peterson S.W. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100:205–226. doi: 10.1080/15572536.2008.11832477. PubMed DOI
Carbone I., Kohn L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556. doi: 10.2307/3761358. DOI
Kawasaki M., Anzawa K., Ushigami T., Kawanishi J., Mochizuki T. Multiple gene analyses are necessary to understand accurate phylogenetic relationships among Trichophyton species. Med. Mycol. J. 2011;52:245–254. doi: 10.3314/mmj.52.245. PubMed DOI
Schmitt I., Crespo A., Divakar P.K., Fankhauser J.D., Herman-Sackett E., Kalb K., Nelsen M.P., Nelson N.A., Rivas-Plata E., Shimp A.D., et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia. 2009;23:35–40. doi: 10.3767/003158509X470602. PubMed DOI PMC