Discovery of New Trichophyton Members, T. persicum and T. spiraliforme spp. nov., as a Cause of Highly Inflammatory Tinea Cases in Iran and Czechia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34468188
PubMed Central
PMC8557871
DOI
10.1128/spectrum.00284-21
Knihovny.cz E-zdroje
- Klíčová slova
- Trichophyton benhamiae complex, dermatophytosis, molecular epidemiology, multigene phylogeny, skin mycoses, zoonotic infections, zoophilic dermatophytes,
- MeSH
- dítě MeSH
- dospělí MeSH
- fylogeneze MeSH
- kočky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrosatelitní repetice genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nemoci koček mikrobiologie přenos MeSH
- nemoci psů mikrobiologie přenos MeSH
- nemoci skotu mikrobiologie přenos MeSH
- předškolní dítě MeSH
- psi MeSH
- retrospektivní studie MeSH
- senioři MeSH
- skot MeSH
- tinea epidemiologie mikrobiologie přenos MeSH
- Trichophyton klasifikace genetika izolace a purifikace MeSH
- zoonózy mikrobiologie přenos MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kočky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- psi MeSH
- senioři MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Írán epidemiologie MeSH
Pathogens from the Trichophyton benhamiae complex are one of the most important causes of animal mycoses with significant zoonotic potential. In light of the recently revised taxonomy of this complex, we retrospectively identified 38 Trichophyton isolates that could not be resolved into any of the existing species. These strains were isolated from Iranian and Czech patients during molecular epidemiological surveys on dermatophytosis and were predominantly associated with highly inflammatory tinea corporis cases, suggesting possible zoonotic etiology. Subsequent phylogenetic (4 markers), population genetic (10 markers), and phenotypic analyses supported recognition of two novel species. The first species, Trichophyton persicum sp. nov., was identified in 36 cases of human dermatophytosis and one case of feline dermatophytosis, mainly in Southern and Western Iran. The second species, Trichophyton spiraliforme sp. nov., is only known from a single case of tinea corporis in a Czech patient who probably contracted the infection from a dog. Although the zoonotic sources of infections summarized in this study are very likely, little is known about the host spectrum of these pathogens. Awareness of these new pathogens among clinicians should refine our knowledge about their poorly explored geographic distribution. IMPORTANCE In this study, we describe two novel agents of dermatophytosis and summarize the clinical manifestation of infections. These new pathogens were discovered thanks to long-term molecular epidemiological studies conducted in Czechia and Iran. Zoonotic origins of the human infections are highly probable, but the animal hosts of these pathogens are poorly known. Further research is needed to refine our knowledge about these new dermatophytes.
Allergy Research Center Mashhad University of Medical Sciencesgrid 411583 a Mashhad Iran
Department of Botany Faculty of Science Charles University Prague Czech Republic
Medical Mycology Research Center Chiba University Chiba Japan
Medicinal Plants Research Center Yasuj University of Medical Sciences Yasuj Iran
Zobrazit více v PubMed
Havlickova B, Czaika VA, Friedrich M. 2008. Epidemiological trends in skin mycoses worldwide. Mycoses 51(Suppl 4):2–15. doi: 10.1111/j.1439-0507.2008.01606.x. PubMed DOI
Deng W, Liang P, Zheng Y, Su Z, Gong Z, Chen J, Feng P, Chen J. 2020. Differential gene expression in HaCaT cells may account for the various clinical presentation caused by anthropophilic and geophilic dermatophytes infections. Mycoses 63:21–29. doi: 10.1111/myc.13021. PubMed DOI
Martinez-Rossi NM, Peres NT, Rossi A. 2017. Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia 182:215–227. doi: 10.1007/s11046-016-0057-9. PubMed DOI
Ginter-Hanselmayer G, Nenoff P. 2019. Clinically relevant mycoses dermatomycoses, p 145–176.
Degreef H. 2008. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia 166:257–265. doi: 10.1007/s11046-008-9101-8. PubMed DOI
Gräser Y, Monod M, Bouchara J-P, Dukik K, Nenoff P, Kargl A, Kupsch C, Zhan P, Packeu A, Chaturvedi V, de Hoog GS. 2018. New insights in dermatophyte research. Med Mycol 56:S2–S9. doi: 10.1093/mmy/myx141. PubMed DOI
John AM, Schwartz RA, Janniger CK. 2018. The kerion: an angry tinea capitis. Int J Dermatol 57:3–9. doi: 10.1111/ijd.13423. PubMed DOI
Hube B, Hay R, Brasch J, Veraldi S, Schaller M. 2015. Dermatomycoses and inflammation: the adaptive balance between growth, damage, and survival. J Mycol Med 25:e44–e58. doi: 10.1016/j.mycmed.2014.11.002. PubMed DOI
Gnat S, Nowakiewicz A, Łagowski D, Zięba P. 2019. Host- and pathogen-dependent susceptibility and predisposition to dermatophytosis. J Med Microbiol 68:823–836. doi: 10.1099/jmm.0.000982. PubMed DOI
Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, Machová L, Maier T, Mallátová N, Man M, Mencl K, Nenoff P, Peano A, Prausová H, Stubbe D, Uhrlaß S, Větrovský T, Wiegand C, Hubka V. 2020. Resolving the taxonomy of emerging zoonotic pathogens in the DOI
Bonifaz A, Archer‐Dubon C, Saúl A. 2004. Tinea imbricata or Tokelau. Int J Dermatol 43:506–510. doi: 10.1111/j.1365-4632.2004.02171.x. PubMed DOI
Pihet M, Bourgeois H, Mazière J-Y, Berlioz-Arthaud A, Bouchara J-P, Chabasse D. 2008. Isolation of PubMed DOI
Agnetti F, Righi C, Scoccia E, Felici A, Crotti S, Moretta I, Moretti A, Maresca C, Troiani L, Papini M. 2014. PubMed DOI
Ming PX, Ti YLX, Bulmer GS. 2006. Outbreak of PubMed DOI
Kielstein P. 1990. Systematic control of dermatophytosis profunda of cattle in the former GDR. Mycoses 33:575–580. doi: 10.1111/myc.1990.33.11-12.575. PubMed DOI
Lund A, Bratberg AM, Næss B, Gudding R. 2014. Control of bovine ringworm by vaccination in Norway. Vet Immunol Immunopathol 158:37–45. doi: 10.1016/j.vetimm.2013.04.007. PubMed DOI
Sabou M, Denis J, Boulanger N, Forouzanfar F, Glatz I, Lipsker D, Poirier P, Candolfi E, Letscher-Bru V. 2018. Molecular identification of PubMed DOI
Kimura U, Yokoyama K, Hiruma M, Kano R, Takamori K, Suga Y. 2015. Tinea faciei caused by PubMed DOI
Hubka V, Čmoková A, Peano A, Větrovský T, Dobiáš R, Mallátová N, Lysková P, Mencl K, Janouškovcová H, Stará J, Kuklová I, Doležalová J, Hamal P, Svobodová L, Koubková J, Kolařík M. 2018. Zoonotic dermatophytoses: clinical manifestation, diagnosis, etiology, treatment, epidemiological situation in the Czech Republic. Čes Slov Dermatol 93:208–235.
Nenoff P, Uhrlaß S, Krüger C, Erhard M, Hipler UC, Seyfarth F, Herrmann J, Wetzig T, Schroedl W, Gräser Y. 2014. PubMed DOI
Barzic CL, Cmokova A, Denaes C, Arné P, Hubka V, Guillot J, Risco-Castillo V. 2021. Detection and control of dermatophytosis in wild European hedgehogs ( PubMed DOI PMC
Hubka V, Peano A, Cmokova A, Guillot J. 2018. Common and emerging dermatophytoses in animals: well-known and new threats, p 31–79.
de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y. 2017. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182:5–31. doi: 10.1007/s11046-016-0073-9. PubMed DOI PMC
Gräser Y, Kuijpers A, Presber W, de Hoog GS. 2000. Molecular taxonomy of the PubMed DOI PMC
Gräser Y, Kuijpers A, Presber W, de Hoog GS. 1999. Molecular taxonomy of PubMed DOI
Brasch J, Gräser Y. 2005. PubMed DOI PMC
Hubka V, Nissen CV, Jensen RH, Arendrup MC, Cmokova A, Kubatova A, Skorepova M, Kolarik M. 2015. Discovery of a sexual stage in PubMed DOI
Hainsworth S, Kučerová I, Sharma R, Cañete-Gibas CF, Hubka V. 2020. Three-gene phylogeny of the genus PubMed DOI
Hubka V, Cmokova A, Skorepova M, Mikula P, Kolarik M. 2014. PubMed DOI
Lorch JM, Minnis AM, Meteyer CU, Redell JA, White JP, Kaarakka HM, Muller LK, Lindner DL, Verant ML, Shearn-Bochsler V, Blehert DS. 2015. The fungus PubMed DOI
Kano R, Kimura U, Kakurai M, Hiruma J, Kamata H, Suga Y, Harada K. 2020. PubMed DOI
Heidemann S, Monod M, Gräser Y. 2010. Signature polymorphisms in the internal transcribed spacer region relevant for the differentiation of zoophilic and anthropophilic strains of PubMed DOI
Gräser Y, Scott J, Summerbell R. 2008. The new species concept in dermatophytes—a polyphasic approach. Mycopathologia 166:239–256. doi: 10.1007/s11046-008-9099-y. PubMed DOI
Khurana A, Masih A, Chowdhary A, Sardana K, Borker S, Gupta A, Gautam R, Sharma P, Jain D. 2018. Correlation of PubMed DOI PMC
Taghipour S, Shamsizadeh F, Pchelin IM, Rezaei-Matehhkolaei A, Zarei Mahmoudabadi A, Valadan R, Ansari S, Katiraee F, Pakshir K, Zomorodian K, Abastabar M. 2020. Emergence of terbinafine resistant PubMed DOI PMC
Ebert A, Monod M, Salamin K, Burmester A, Uhrlaß S, Wiegand C, Hipler UC, Krüger C, Koch D, Wittig F, Verma SB, Singal A, Gupta S, Vasani R, Saraswat A, Madhu R, Panda S, Das A, Kura MM, Kumar A, Poojary S, Schirm S, Gräser Y, Paasch U, Nenoff P. 2020. Alarming India‐wide phenomenon of antifungal resistance in dermatophytes: a multicentre study. Mycoses 63:717–728. doi: 10.1111/myc.13091. PubMed DOI
Shamsizadeh F, Ansari S, Zarei Mahmoudabadi A, Hubka V, Čmoková A, Guillot J, Rafiei A, Zomorodian K, Nouripour-Sisakht S, Diba K, Mohammadi T, Zarrinfar H, Rezaei-Matehkolaei A. 2021. PubMed DOI
Ansari S, Ahmadi B, Hedayati MT, Nouripour‐Sisakht S, Taghizadeh‐Armaki M, Fathi M, Deravi N, Shokoohi GR, Rezaei‐Matehkolaei A. 2021. Investigation of PubMed DOI
Zareshahrabadi Z, Totonchi A, Rezaei-Matehkolaei A, Ilkit M, Ghahartars M, Arastehfar A, Motamedi M, Nouraei H, Sharifi Lari M, Mohammadi T, Zomorodian K. 2021. Molecular identification and antifungal susceptibility among clinical isolates of dermatophytes in Shiraz, Iran (2017–2019). Mycoses 64:385–393. doi: 10.1111/myc.13226. PubMed DOI
Hayette M-P, Sacheli R. 2015. Dermatophytosis, trends in epidemiology and diagnostic approach. Curr Fungal Infect Rep 9:164–179. doi: 10.1007/s12281-015-0231-4. DOI
Khosravi A, Aghamirian M, Mahmoudi M. 1994. Dermatophytoses in Iran. Mycoses 37:43–48. doi: 10.1111/j.1439-0507.1994.tb00284.x. PubMed DOI
Ansari S, Hedayati MT, Zomorodian K, Pakshir K, Badali H, Rafiei A, Ravandeh M, Seyedmousavi S. 2016. Molecular characterization and PubMed DOI
Zamani S, Sadeghi G, Yazdinia F, Moosa H, Pazooki A, Ghafarinia Z, Abbasi M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. 2016. Epidemiological trends of dermatophytosis in Tehran, Iran: a five-year retrospective study. J Mycol Med 26:351–358. doi: 10.1016/j.mycmed.2016.06.007. PubMed DOI
Ahmadi B, Mirhendi H, Shidfar M, Nouripour-Sisakht S, Jalalizand N, Geramishoar M, Shokoohi G. 2015. A comparative study on morphological versus molecular identification of dermatophyte isolates. J Mycol Med 25:29–35. doi: 10.1016/j.mycmed.2014.10.022. PubMed DOI
Rezaei-Matehkolaei A, Makimura K, de Hoog GS, Shidfar MR, Zaini F, Eshraghian M, Naghan PA, Mirhendi H. 2013. Molecular epidemiology of dermatophytosis in Tehran, Iran, a clinical and microbial survey. Med Mycol 51:203–207. doi: 10.3109/13693786.2012.686124. PubMed DOI
Didehdar M, Shokohi T, Khansarinejad B, Sefidgar SAA, Abastabar M, Haghani I, Amirrajab N, Mondanizadeh M. 2016. Characterization of clinically important dermatophytes in North of Iran using PCR-RFLP on ITS region. J Mycol Med 26:345–350. doi: 10.1016/j.mycmed.2016.06.006. PubMed DOI
Farokhipor S, Ghiasian S, Nazeri H, Kord M, Didehdar M. 2018. Characterizing the clinical isolates of dermatophytes in Hamadan city, central west of Iran, using PCR-RLFP method. J Mycol Med 28:101–105. doi: 10.1016/j.mycmed.2017.11.009. PubMed DOI
Ebrahimi M, Zarrinfar H, Naseri A, Najafzadeh MJ, Fata A, Parian M, Khorsand I, Babič MN. 2019. Epidemiology of dermatophytosis in northeastern Iran; a subtropical region. Curr Med Mycol 5:16–21. doi: 10.18502/cmm.5.2.1156. PubMed DOI PMC
Rezaei-Matehkolaei A, Rafiei A, Makimura K, Gräser Y, Gharghani M, Sadeghi-Nejad B. 2016. Epidemiological aspects of dermatophytosis in Khuzestan, southwestern Iran, an update. Mycopathologia 181:547–553. doi: 10.1007/s11046-016-9990-x. PubMed DOI
Bontems O, Fratti M, Salamin K, Guenova E, Monod M. 2020. Epidemiology of dermatophytoses in Switzerland according to a survey of dermatophytes isolated in Lausanne between 2001 and 2018. J Fungi 6:95. doi: 10.3390/jof6020095. PubMed DOI PMC
Uhrlaß S, Krüger C, Nenoff P. 2015. PubMed DOI
Packeu A, Stubbe D, Roesems S, Goens K, Van Rooij P, de Hoog GS, Hendrickx M. 2020. Lineages within the PubMed DOI
Kaszubiak A, Klein S, de Hoog GS, Gräser Y. 2004. Population structure and evolutionary origins of PubMed DOI
Rezaei-Matehkolaei A, Makimura K, de Hoog GS, Shidfar MR, Satoh K, Najafzadeh MJ, Mirhendi H. 2012. Multilocus differentiation of the related dermatophytes PubMed DOI
Ziółkowska G, Nowakiewicz A, Gnat S, Trościańczyk A, Zięba P, Majer Dziedzic B. 2015. Molecular identification and classification of PubMed DOI
Komarek J, Wurst Z. 1989. Dermatophytes in clinically healthy dogs and cats. Vet Med (Praha) 34:59–63. PubMed
Drouot S, Mignon B, Fratti M, Roosje P, Monod M. 2009. Pets as the main source of two zoonotic species of the PubMed DOI
Weiß R, Böhm KH, Mumme J, Nicklas W. 1979. 13 Jahre veterinärmedizinische mykologische Routinediagnostik. Dermatophytennachweise in den Jahren 1965 bis 1977. Sabouraudia 17:345–353. doi: 10.1080/00362177985380521. PubMed DOI
Cabañes F, Abarca ML, Bragulat MR, Castella G. 1996. Seasonal study of the fungal biota of the fur of dogs. Mycopathologia 133:1–7. doi: 10.1007/BF00437092. PubMed DOI
Cafarchia C, Gasser RB, Figueredo LA, Weigl S, Danesi P, Capelli G, Otranto D. 2013. An improved molecular diagnostic assay for canine and feline dermatophytosis. Med Mycol 51:136–143. doi: 10.3109/13693786.2012.691995. PubMed DOI
Sieklucki U, Oh SH, Hoyer LL. 2014. Frequent isolation of PubMed DOI PMC
Yahyaraeyat R, Shokri H, Khosravi A, Soltani M, Erfanmanesh A, Nikaein D. 2009. Occurrence of animals dermatophytosis in Tehran, Iran. World J Zool 4:200–204.
Shokri H, Khosravi A. 2016. An epidemiological study of animals dermatomycoses in Iran. J Mycol Med 26:170–177. doi: 10.1016/j.mycmed.2016.04.007. PubMed DOI
Khosravi A, Mahmoudi M. 2003. Dermatophytes isolated from domestic animals in Iran. Mycoses 46:222–225. doi: 10.1046/j.1439-0507.2003.00868.x. PubMed DOI
Khosravi A. 1996. Fungal flora of the hair coat of stray cats in Iran. Mycoses 39:241–243. doi: 10.1111/j.1439-0507.1996.tb00133.x. PubMed DOI
Abastabar M, Jedi A, Guillot J, Ilkit M, Eidi S, Hedayati MT, Shokohi T, Daie Ghazvini R, Rezaei-Matehkolaei A, Katiraee F, Javidnia J, Ahmadi B, Badali H. 2019. PubMed DOI
Moosavi A, Ghazvini R, Ahmadikia K, Hashemi S, Geramishoar M, Mohebali M, Yekaninejad M, Bakhshi H, Khodabakhsh M. 2019. The frequency of fungi isolated from the skin and hair of asymptomatic cats in rural area of Meshkin-shahr-Iran. J Mycol Med 29:14–18. doi: 10.1016/j.mycmed.2019.01.004. PubMed DOI
Łagowski D, Gnat S, Nowakiewicz A, Osińska M. 2021. Assessment of the subtilisin gene profile in PubMed DOI
Mohammadi R, Abastabar M, Mirhendi H, Badali H, Shadzi S, Chadeganipour M, Pourfathi P, Jalalizand N, Haghani I. 2015. Use of restriction fragment length polymorphism to rapidly identify dermatophyte species related to dermatophytosis. Jundishapur J Microbiol 8:e17296. doi: 10.5812/jjm.8(5)2015.17296. PubMed DOI PMC
Hubka V, Větrovský T, Dobiášová S, Skořepová M, Lysková P, Mencl K, Mallátová N, Janouškovcová H, Hanzlíčková J, Dobiáš R, Čmoková A, Stará J, Hamal P, Svobodová L, Kolařík M. 2014. Molecular epidemiology of dermatophytoses in the Czech Republic—two-year-study results. Čes Slov Dermatol 89:167–174.
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi: 10.1111/j.1365-294x.1993.tb00005.x. PubMed DOI
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p 315–322.
Kawasaki M, Anzawa K, Ushigami T, Kawanishi J, Mochizuki T. 2011. Multiple gene analyses are necessary to understand accurate phylogenetic relationships among PubMed DOI
Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995. PubMed DOI PMC
Mirhendi H, Makimura K, de Hoog GS, Rezaei-Matehkolaei A, Najafzadeh MJ, Umeda Y, Ahmadi B. 2015. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med Mycol 53:215–224. doi: 10.1093/mmy/myu088. PubMed DOI
Kano R, Kawasaki M, Mochizuki T, Hiruma M, Hasegawa A. 2012. Mating genes of the PubMed DOI
Symoens F, Jousson O, Packeu A, Fratti M, Staib P, Mignon B, Monod M. 2013. The dermatophyte species PubMed DOI
Hubka V, Nováková A, Jurjević Ž, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M. 2018. Polyphasic data support the splitting of PubMed DOI
Réblová M, Hubka V, Thureborn O, Lundberg J, Sallstedt T, Wedin M, Ivarsson M. 2016. From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the PubMed DOI PMC
Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Leigh JW, Bryant D. 2015. POPART: full‐feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Schlüter PM, Harris SA. 2006. Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572. doi: 10.1111/j.1471-8286.2006.01225.x. DOI
Kelly KL, Judd DB, Inter-Society Color Council. 1964. ISCC-NBS color-name charts illustrated with centroid colors. US National Bureau of Standards, Chicago, IL.
Rippon JW. 1988. Medical mycology: the pathogenic fungi and the pathogenic actinomycetes, 3rd ed. Saunders, Philadelphia, PA.
Lebasque J. 1933. Les champignons des teignes du cheval et des bovidés. Faculté des Sciences de Paris, Paris, France.
First Step on the Way to Identify Dermatophytes Using Odour Fingerprints
Wild rodents harbour high diversity of Arthroderma
Dryad
10.5061/dryad.59zw3r275