Discovery of New Trichophyton Members, T. persicum and T. spiraliforme spp. nov., as a Cause of Highly Inflammatory Tinea Cases in Iran and Czechia

. 2021 Oct 31 ; 9 (2) : e0028421. [epub] 20210901

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34468188

Pathogens from the Trichophyton benhamiae complex are one of the most important causes of animal mycoses with significant zoonotic potential. In light of the recently revised taxonomy of this complex, we retrospectively identified 38 Trichophyton isolates that could not be resolved into any of the existing species. These strains were isolated from Iranian and Czech patients during molecular epidemiological surveys on dermatophytosis and were predominantly associated with highly inflammatory tinea corporis cases, suggesting possible zoonotic etiology. Subsequent phylogenetic (4 markers), population genetic (10 markers), and phenotypic analyses supported recognition of two novel species. The first species, Trichophyton persicum sp. nov., was identified in 36 cases of human dermatophytosis and one case of feline dermatophytosis, mainly in Southern and Western Iran. The second species, Trichophyton spiraliforme sp. nov., is only known from a single case of tinea corporis in a Czech patient who probably contracted the infection from a dog. Although the zoonotic sources of infections summarized in this study are very likely, little is known about the host spectrum of these pathogens. Awareness of these new pathogens among clinicians should refine our knowledge about their poorly explored geographic distribution. IMPORTANCE In this study, we describe two novel agents of dermatophytosis and summarize the clinical manifestation of infections. These new pathogens were discovered thanks to long-term molecular epidemiological studies conducted in Czechia and Iran. Zoonotic origins of the human infections are highly probable, but the animal hosts of these pathogens are poorly known. Further research is needed to refine our knowledge about these new dermatophytes.

Zobrazit více v PubMed

Havlickova B, Czaika VA, Friedrich M. 2008. Epidemiological trends in skin mycoses worldwide. Mycoses 51(Suppl 4):2–15. doi:10.1111/j.1439-0507.2008.01606.x. PubMed DOI

Deng W, Liang P, Zheng Y, Su Z, Gong Z, Chen J, Feng P, Chen J. 2020. Differential gene expression in HaCaT cells may account for the various clinical presentation caused by anthropophilic and geophilic dermatophytes infections. Mycoses 63:21–29. doi:10.1111/myc.13021. PubMed DOI

Martinez-Rossi NM, Peres NT, Rossi A. 2017. Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia 182:215–227. doi:10.1007/s11046-016-0057-9. PubMed DOI

Ginter-Hanselmayer G, Nenoff P. 2019. Clinically relevant mycoses dermatomycoses, p 145–176. In Presterl E (ed), Clinically relevant mycoses. Springer, Cham, Switzerland.

Degreef H. 2008. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia 166:257–265. doi:10.1007/s11046-008-9101-8. PubMed DOI

Gräser Y, Monod M, Bouchara J-P, Dukik K, Nenoff P, Kargl A, Kupsch C, Zhan P, Packeu A, Chaturvedi V, de Hoog GS. 2018. New insights in dermatophyte research. Med Mycol 56:S2–S9. doi:10.1093/mmy/myx141. PubMed DOI

John AM, Schwartz RA, Janniger CK. 2018. The kerion: an angry tinea capitis. Int J Dermatol 57:3–9. doi:10.1111/ijd.13423. PubMed DOI

Hube B, Hay R, Brasch J, Veraldi S, Schaller M. 2015. Dermatomycoses and inflammation: the adaptive balance between growth, damage, and survival. J Mycol Med 25:e44–e58. doi:10.1016/j.mycmed.2014.11.002. PubMed DOI

Gnat S, Nowakiewicz A, Łagowski D, Zięba P. 2019. Host- and pathogen-dependent susceptibility and predisposition to dermatophytosis. J Med Microbiol 68:823–836. doi:10.1099/jmm.0.000982. PubMed DOI

Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, Machová L, Maier T, Mallátová N, Man M, Mencl K, Nenoff P, Peano A, Prausová H, Stubbe D, Uhrlaß S, Větrovský T, Wiegand C, Hubka V. 2020. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers 104:333–387. doi:10.1007/s13225-020-00465-3. DOI

Bonifaz A, Archer‐Dubon C, Saúl A. 2004. Tinea imbricata or Tokelau. Int J Dermatol 43:506–510. doi:10.1111/j.1365-4632.2004.02171.x. PubMed DOI

Pihet M, Bourgeois H, Mazière J-Y, Berlioz-Arthaud A, Bouchara J-P, Chabasse D. 2008. Isolation of Trichophyton concentricum from chronic cutaneous lesions in patients from the Solomon Islands. Trans R Soc Trop Med Hyg 102:389–393. doi:10.1016/j.trstmh.2008.01.002. PubMed DOI

Agnetti F, Righi C, Scoccia E, Felici A, Crotti S, Moretta I, Moretti A, Maresca C, Troiani L, Papini M. 2014. Trichophyton verrucosum infection in cattle farms of Umbria (Central Italy) and transmission to humans. Mycoses 57:400–405. doi:10.1111/myc.12174. PubMed DOI

Ming PX, Ti YLX, Bulmer GS. 2006. Outbreak of Trichophyton verrucosum in China transmitted from cows to humans. Mycopathologia 161:225–228. doi:10.1007/s11046-005-0223-y. PubMed DOI

Kielstein P. 1990. Systematic control of dermatophytosis profunda of cattle in the former GDR. Mycoses 33:575–580. doi:10.1111/myc.1990.33.11-12.575. PubMed DOI

Lund A, Bratberg AM, Næss B, Gudding R. 2014. Control of bovine ringworm by vaccination in Norway. Vet Immunol Immunopathol 158:37–45. doi:10.1016/j.vetimm.2013.04.007. PubMed DOI

Sabou M, Denis J, Boulanger N, Forouzanfar F, Glatz I, Lipsker D, Poirier P, Candolfi E, Letscher-Bru V. 2018. Molecular identification of Trichophyton benhamiae in Strasbourg, France: a 9-year retrospective study. Med Mycol 56:723–734. doi:10.1093/mmy/myx100. PubMed DOI

Kimura U, Yokoyama K, Hiruma M, Kano R, Takamori K, Suga Y. 2015. Tinea faciei caused by Trichophyton mentagrophytes (molecular type Arthroderma benhamiae) mimics impetigo: a case report and literature review of cases in Japan. Med Mycol J 56:E1–E5. doi:10.3314/mmj.56.E1. PubMed DOI

Hubka V, Čmoková A, Peano A, Větrovský T, Dobiáš R, Mallátová N, Lysková P, Mencl K, Janouškovcová H, Stará J, Kuklová I, Doležalová J, Hamal P, Svobodová L, Koubková J, Kolařík M. 2018. Zoonotic dermatophytoses: clinical manifestation, diagnosis, etiology, treatment, epidemiological situation in the Czech Republic. Čes Slov Dermatol 93:208–235.

Nenoff P, Uhrlaß S, Krüger C, Erhard M, Hipler UC, Seyfarth F, Herrmann J, Wetzig T, Schroedl W, Gräser Y. 2014. Trichophyton species von Arthroderma benhamiae—a new infectious agent in dermatology. J Dtsch Dermatol Ges 12:571–581. doi:10.1111/ddg.12390. PubMed DOI

Barzic CL, Cmokova A, Denaes C, Arné P, Hubka V, Guillot J, Risco-Castillo V. 2021. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J Fungi 7:74. doi:10.3390/jof7020074. PubMed DOI PMC

Hubka V, Peano A, Cmokova A, Guillot J. 2018. Common and emerging dermatophytoses in animals: well-known and new threats, p 31–79. In Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE (ed), Emerging and epizootic fungal infections in animals. Springer, Cham, Switzerland.

de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y. 2017. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182:5–31. doi:10.1007/s11046-016-0073-9. PubMed DOI PMC

Gräser Y, Kuijpers A, Presber W, de Hoog GS. 2000. Molecular taxonomy of the Trichophyton rubrum complex. J Clin Microbiol 38:3329–3336. doi:10.1128/JCM.38.9.3329-3336.2000. PubMed DOI PMC

Gräser Y, Kuijpers A, Presber W, de Hoog GS. 1999. Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans. Med Mycol 37:315–330. doi:10.1046/j.1365-280x.1999.00234.x. PubMed DOI

Brasch J, Gräser Y. 2005. Trichophyton eboreum sp. nov. isolated from human skin. J Clin Microbiol 43:5230–5237. doi:10.1128/JCM.43.10.5230-5237.2005. PubMed DOI PMC

Hubka V, Nissen CV, Jensen RH, Arendrup MC, Cmokova A, Kubatova A, Skorepova M, Kolarik M. 2015. Discovery of a sexual stage in Trichophyton onychocola, a presumed geophilic dermatophyte isolated from toenails of patients with a history of T. rubrum onychomycosis. Med Mycol 53:798–809. doi:10.1093/mmy/myv044. PubMed DOI

Hainsworth S, Kučerová I, Sharma R, Cañete-Gibas CF, Hubka V. 2020. Three-gene phylogeny of the genus Arthroderma: basis for future taxonomic studies. Med Mycol 59:355–365. doi:10.1093/mmy/myaa057. PubMed DOI

Hubka V, Cmokova A, Skorepova M, Mikula P, Kolarik M. 2014. Trichophyton onychocola sp. nov. isolated from human nail. Med Mycol 52:285–292. doi:10.1093/mmy/myt010. PubMed DOI

Lorch JM, Minnis AM, Meteyer CU, Redell JA, White JP, Kaarakka HM, Muller LK, Lindner DL, Verant ML, Shearn-Bochsler V, Blehert DS. 2015. The fungus Trichophyton redellii sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats. J Wildl Dis 51:36–47. doi:10.7589/2014-05-134. PubMed DOI

Kano R, Kimura U, Kakurai M, Hiruma J, Kamata H, Suga Y, Harada K. 2020. Trichophyton indotineae sp. nov.: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 185:947–912. doi:10.1007/s11046-020-00455-8. PubMed DOI

Heidemann S, Monod M, Gräser Y. 2010. Signature polymorphisms in the internal transcribed spacer region relevant for the differentiation of zoophilic and anthropophilic strains of Trichophyton interdigitale and other species of T. mentagrophytes sensu lato. Br J Dermatol 162:282–295. doi:10.1111/j.1365-2133.2009.09494.x. PubMed DOI

Gräser Y, Scott J, Summerbell R. 2008. The new species concept in dermatophytes—a polyphasic approach. Mycopathologia 166:239–256. doi:10.1007/s11046-008-9099-y. PubMed DOI

Khurana A, Masih A, Chowdhary A, Sardana K, Borker S, Gupta A, Gautam R, Sharma P, Jain D. 2018. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob Agents Chemother 62:e01038-18. doi:10.1128/AAC.01038-18. PubMed DOI PMC

Taghipour S, Shamsizadeh F, Pchelin IM, Rezaei-Matehhkolaei A, Zarei Mahmoudabadi A, Valadan R, Ansari S, Katiraee F, Pakshir K, Zomorodian K, Abastabar M. 2020. Emergence of terbinafine resistant Trichophyton mentagrophytes in Iran, harboring mutations in the squalene epoxidase (SQLE) gene. Infect Drug Resist 13:845–850. doi:10.2147/IDR.S246025. PubMed DOI PMC

Ebert A, Monod M, Salamin K, Burmester A, Uhrlaß S, Wiegand C, Hipler UC, Krüger C, Koch D, Wittig F, Verma SB, Singal A, Gupta S, Vasani R, Saraswat A, Madhu R, Panda S, Das A, Kura MM, Kumar A, Poojary S, Schirm S, Gräser Y, Paasch U, Nenoff P. 2020. Alarming India‐wide phenomenon of antifungal resistance in dermatophytes: a multicentre study. Mycoses 63:717–728. doi:10.1111/myc.13091. PubMed DOI

Shamsizadeh F, Ansari S, Zarei Mahmoudabadi A, Hubka V, Čmoková A, Guillot J, Rafiei A, Zomorodian K, Nouripour-Sisakht S, Diba K, Mohammadi T, Zarrinfar H, Rezaei-Matehkolaei A. 2021. In vitro antifungal susceptibility patterns of Trichophyton benhamiae complex isolates from diverse origin. Mycoses doi:10.1111/myc.13287. PubMed DOI

Ansari S, Ahmadi B, Hedayati MT, Nouripour‐Sisakht S, Taghizadeh‐Armaki M, Fathi M, Deravi N, Shokoohi GR, Rezaei‐Matehkolaei A. 2021. Investigation of in vitro antifungal susceptibility testing and genetic diversity of clinical isolates of Trichophyton benhamiae and Trichophyton eriotrephon in Iran. Mycoses 64:316–323. doi:10.1111/myc.13210. PubMed DOI

Zareshahrabadi Z, Totonchi A, Rezaei-Matehkolaei A, Ilkit M, Ghahartars M, Arastehfar A, Motamedi M, Nouraei H, Sharifi Lari M, Mohammadi T, Zomorodian K. 2021. Molecular identification and antifungal susceptibility among clinical isolates of dermatophytes in Shiraz, Iran (2017–2019). Mycoses 64:385–393. doi:10.1111/myc.13226. PubMed DOI

Hayette M-P, Sacheli R. 2015. Dermatophytosis, trends in epidemiology and diagnostic approach. Curr Fungal Infect Rep 9:164–179. doi:10.1007/s12281-015-0231-4. DOI

Khosravi A, Aghamirian M, Mahmoudi M. 1994. Dermatophytoses in Iran. Mycoses 37:43–48. doi:10.1111/j.1439-0507.1994.tb00284.x. PubMed DOI

Ansari S, Hedayati MT, Zomorodian K, Pakshir K, Badali H, Rafiei A, Ravandeh M, Seyedmousavi S. 2016. Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia 181:89–95. doi:10.1007/s11046-015-9941-y. PubMed DOI

Zamani S, Sadeghi G, Yazdinia F, Moosa H, Pazooki A, Ghafarinia Z, Abbasi M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. 2016. Epidemiological trends of dermatophytosis in Tehran, Iran: a five-year retrospective study. J Mycol Med 26:351–358. doi:10.1016/j.mycmed.2016.06.007. PubMed DOI

Ahmadi B, Mirhendi H, Shidfar M, Nouripour-Sisakht S, Jalalizand N, Geramishoar M, Shokoohi G. 2015. A comparative study on morphological versus molecular identification of dermatophyte isolates. J Mycol Med 25:29–35. doi:10.1016/j.mycmed.2014.10.022. PubMed DOI

Rezaei-Matehkolaei A, Makimura K, de Hoog GS, Shidfar MR, Zaini F, Eshraghian M, Naghan PA, Mirhendi H. 2013. Molecular epidemiology of dermatophytosis in Tehran, Iran, a clinical and microbial survey. Med Mycol 51:203–207. doi:10.3109/13693786.2012.686124. PubMed DOI

Didehdar M, Shokohi T, Khansarinejad B, Sefidgar SAA, Abastabar M, Haghani I, Amirrajab N, Mondanizadeh M. 2016. Characterization of clinically important dermatophytes in North of Iran using PCR-RFLP on ITS region. J Mycol Med 26:345–350. doi:10.1016/j.mycmed.2016.06.006. PubMed DOI

Farokhipor S, Ghiasian S, Nazeri H, Kord M, Didehdar M. 2018. Characterizing the clinical isolates of dermatophytes in Hamadan city, central west of Iran, using PCR-RLFP method. J Mycol Med 28:101–105. doi:10.1016/j.mycmed.2017.11.009. PubMed DOI

Ebrahimi M, Zarrinfar H, Naseri A, Najafzadeh MJ, Fata A, Parian M, Khorsand I, Babič MN. 2019. Epidemiology of dermatophytosis in northeastern Iran; a subtropical region. Curr Med Mycol 5:16–21. doi:10.18502/cmm.5.2.1156. PubMed DOI PMC

Rezaei-Matehkolaei A, Rafiei A, Makimura K, Gräser Y, Gharghani M, Sadeghi-Nejad B. 2016. Epidemiological aspects of dermatophytosis in Khuzestan, southwestern Iran, an update. Mycopathologia 181:547–553. doi:10.1007/s11046-016-9990-x. PubMed DOI

Bontems O, Fratti M, Salamin K, Guenova E, Monod M. 2020. Epidemiology of dermatophytoses in Switzerland according to a survey of dermatophytes isolated in Lausanne between 2001 and 2018. J Fungi 6:95. doi:10.3390/jof6020095. PubMed DOI PMC

Uhrlaß S, Krüger C, Nenoff P. 2015. Microsporum canis: Aktuelle Daten zur Prävalenz des zoophilen Dermatophyten im mitteldeutschen Raum. Hautarzt 66:855–862. doi:10.1007/s00105-015-3697-7. PubMed DOI

Packeu A, Stubbe D, Roesems S, Goens K, Van Rooij P, de Hoog GS, Hendrickx M. 2020. Lineages within the Trichophyton rubrum complex. Mycopathologia 185:123–136. doi:10.1007/s11046-019-00386-z. PubMed DOI

Kaszubiak A, Klein S, de Hoog GS, Gräser Y. 2004. Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii. Infect Genet Evol 4:179–186. doi:10.1016/j.meegid.2003.12.004. PubMed DOI

Rezaei-Matehkolaei A, Makimura K, de Hoog GS, Shidfar MR, Satoh K, Najafzadeh MJ, Mirhendi H. 2012. Multilocus differentiation of the related dermatophytes Microsporum canis, Microsporum ferrugineum and Microsporum audouinii. J Med Microbiol 61:57–63. doi:10.1099/jmm.0.036541-0. PubMed DOI

Ziółkowska G, Nowakiewicz A, Gnat S, Trościańczyk A, Zięba P, Majer Dziedzic B. 2015. Molecular identification and classification of Trichophyton mentagrophytes complex strains isolated from humans and selected animal species. Mycoses 58:119–126. doi:10.1111/myc.12284. PubMed DOI

Komarek J, Wurst Z. 1989. Dermatophytes in clinically healthy dogs and cats. Vet Med (Praha) 34:59–63. PubMed

Drouot S, Mignon B, Fratti M, Roosje P, Monod M. 2009. Pets as the main source of two zoonotic species of the Trichophyton mentagrophytes complex in Switzerland, Arthroderma vanbreuseghemii and Arthroderma benhamiae. Vet Dermatol 20:13–18. doi:10.1111/j.1365-3164.2008.00691.x. PubMed DOI

Weiß R, Böhm KH, Mumme J, Nicklas W. 1979. 13 Jahre veterinärmedizinische mykologische Routinediagnostik. Dermatophytennachweise in den Jahren 1965 bis 1977. Sabouraudia 17:345–353. doi:10.1080/00362177985380521. PubMed DOI

Cabañes F, Abarca ML, Bragulat MR, Castella G. 1996. Seasonal study of the fungal biota of the fur of dogs. Mycopathologia 133:1–7. doi:10.1007/BF00437092. PubMed DOI

Cafarchia C, Gasser RB, Figueredo LA, Weigl S, Danesi P, Capelli G, Otranto D. 2013. An improved molecular diagnostic assay for canine and feline dermatophytosis. Med Mycol 51:136–143. doi:10.3109/13693786.2012.691995. PubMed DOI

Sieklucki U, Oh SH, Hoyer LL. 2014. Frequent isolation of Arthroderma benhamiae from dogs with dermatophytosis. Vet Dermatol 25:39–41. doi:10.1111/vde.12095. PubMed DOI PMC

Yahyaraeyat R, Shokri H, Khosravi A, Soltani M, Erfanmanesh A, Nikaein D. 2009. Occurrence of animals dermatophytosis in Tehran, Iran. World J Zool 4:200–204.

Shokri H, Khosravi A. 2016. An epidemiological study of animals dermatomycoses in Iran. J Mycol Med 26:170–177. doi:10.1016/j.mycmed.2016.04.007. PubMed DOI

Khosravi A, Mahmoudi M. 2003. Dermatophytes isolated from domestic animals in Iran. Mycoses 46:222–225. doi:10.1046/j.1439-0507.2003.00868.x. PubMed DOI

Khosravi A. 1996. Fungal flora of the hair coat of stray cats in Iran. Mycoses 39:241–243. doi:10.1111/j.1439-0507.1996.tb00133.x. PubMed DOI

Abastabar M, Jedi A, Guillot J, Ilkit M, Eidi S, Hedayati MT, Shokohi T, Daie Ghazvini R, Rezaei-Matehkolaei A, Katiraee F, Javidnia J, Ahmadi B, Badali H. 2019. In vitro activities of 15 antifungal drugs against a large collection of clinical isolates of Microsporum canis. Mycoses 62:1069–1078. doi:10.1111/myc.12986. PubMed DOI

Moosavi A, Ghazvini R, Ahmadikia K, Hashemi S, Geramishoar M, Mohebali M, Yekaninejad M, Bakhshi H, Khodabakhsh M. 2019. The frequency of fungi isolated from the skin and hair of asymptomatic cats in rural area of Meshkin-shahr-Iran. J Mycol Med 29:14–18. doi:10.1016/j.mycmed.2019.01.004. PubMed DOI

Łagowski D, Gnat S, Nowakiewicz A, Osińska M. 2021. Assessment of the subtilisin gene profile in Trichophyton verrucosum isolated from human and animal dermatophytoses in two‐stage multiplex PCR. J Appl Microbiol 131:300–306. doi:10.1111/jam.14942. PubMed DOI

Mohammadi R, Abastabar M, Mirhendi H, Badali H, Shadzi S, Chadeganipour M, Pourfathi P, Jalalizand N, Haghani I. 2015. Use of restriction fragment length polymorphism to rapidly identify dermatophyte species related to dermatophytosis. Jundishapur J Microbiol 8:e17296. doi:10.5812/jjm.8(5)2015.17296. PubMed DOI PMC

Hubka V, Větrovský T, Dobiášová S, Skořepová M, Lysková P, Mencl K, Mallátová N, Janouškovcová H, Hanzlíčková J, Dobiáš R, Čmoková A, Stará J, Hamal P, Svobodová L, Kolařík M. 2014. Molecular epidemiology of dermatophytoses in the Czech Republic—two-year-study results. Čes Slov Dermatol 89:167–174.

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294x.1993.tb00005.x. PubMed DOI

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p 315–322. In Innis MA, Gelfand DH, J. SJ, White TJ (ed), PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA.

Kawasaki M, Anzawa K, Ushigami T, Kawanishi J, Mochizuki T. 2011. Multiple gene analyses are necessary to understand accurate phylogenetic relationships among Trichophyton species. Med Mycol J 52:245–254. doi:10.3314/mmj.52.245. PubMed DOI

Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330. doi:10.1128/aem.61.4.1323-1330.1995. PubMed DOI PMC

Mirhendi H, Makimura K, de Hoog GS, Rezaei-Matehkolaei A, Najafzadeh MJ, Umeda Y, Ahmadi B. 2015. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med Mycol 53:215–224. doi:10.1093/mmy/myu088. PubMed DOI

Kano R, Kawasaki M, Mochizuki T, Hiruma M, Hasegawa A. 2012. Mating genes of the Trichophyton mentagrophytes complex. Mycopathologia 173:103–112. doi:10.1007/s11046-011-9487-6. PubMed DOI

Symoens F, Jousson O, Packeu A, Fratti M, Staib P, Mignon B, Monod M. 2013. The dermatophyte species Arthroderma benhamiae: intraspecies variability and mating behaviour. J Med Microbiol 62:377–385. doi:10.1099/jmm.0.053223-0. PubMed DOI

Hubka V, Nováková A, Jurjević Ž, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M. 2018. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. Int J Syst Evol Microbiol 68:995–1011. doi:10.1099/ijsem.0.002583. PubMed DOI

Réblová M, Hubka V, Thureborn O, Lundberg J, Sallstedt T, Wedin M, Ivarsson M. 2016. From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the Chaetothyriales. PLoS One 11:e0163396. doi:10.1371/journal.pone.0163396. PubMed DOI PMC

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. doi:10.1093/bib/bbx108. PubMed DOI PMC

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. doi:10.1093/molbev/msw260. PubMed DOI

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029. PubMed DOI PMC

Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x. PubMed DOI

Leigh JW, Bryant D. 2015. POPART: full‐feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. doi:10.1111/2041-210X.12410. DOI

Schlüter PM, Harris SA. 2006. Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572. doi:10.1111/j.1471-8286.2006.01225.x. DOI

Kelly KL, Judd DB, Inter-Society Color Council. 1964. ISCC-NBS color-name charts illustrated with centroid colors. US National Bureau of Standards, Chicago, IL.

Rippon JW. 1988. Medical mycology: the pathogenic fungi and the pathogenic actinomycetes, 3rd ed. Saunders, Philadelphia, PA.

Lebasque J. 1933. Les champignons des teignes du cheval et des bovidés. Faculté des Sciences de Paris, Paris, France.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Resolving Phylogenetic Relationships Within the Trichophyton mentagrophytes Complex: A RADseq Genomic Approach Challenges Status of 'Terbinafine-Resistant' Trichophyton indotineae as Distinct Species

. 2025 Apr ; 68 (4) : e70050.

First Step on the Way to Identify Dermatophytes Using Odour Fingerprints

. 2025 Jan 07 ; 190 (1) : 10. [epub] 20250107

Wild rodents harbour high diversity of Arthroderma

. 2023 Jun ; 50 () : 27-47. [epub] 20230201

Defining the relationship between phylogeny, clinical manifestation, and phenotype for Trichophyton mentagrophytes/interdigitale complex; a literature review and taxonomic recommendations

. 2023 May 01 ; 61 (5) : .

Cases of dermatophytosis caused by Trichophyton benhamiae var. luteum and T. europaeum, newly described dermatophytes within the T. benhamiae complex

. 2022 Oct ; 33 (5) : 440-445. [epub] 20220530

Host-driven subspeciation in the hedgehog fungus, Trichophyton erinacei, an emerging cause of human dermatophytosis

. 2022 Jul 12 ; 48 () : 203-218. [epub] 20220605

Subtyping Options for Microsporum canis Using Microsatellites and MLST: A Case Study from Southern Italy

. 2021 Dec 22 ; 11 (1) : . [epub] 20211222

An Outbreak of Trichophyton quinckeanum Zoonotic Infections in the Czech Republic Transmitted from Cats and Dogs

. 2021 Aug 25 ; 7 (9) : . [epub] 20210825

Zobrazit více v PubMed

Dryad
10.5061/dryad.59zw3r275

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...