First Step on the Way to Identify Dermatophytes Using Odour Fingerprints

. 2025 Jan 07 ; 190 (1) : 10. [epub] 20250107

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39775995

Grantová podpora
NU21-05-00681 Ministerstvo Zdravotnictví Ceské Republiky
START/SCI092 Univerzita Karlova v Praze
RVO: 61388971 Akademie Věd České Republiky
VP33 MycoLife - the world of fungi Akademie Věd České Republiky

Odkazy

PubMed 39775995
PubMed Central PMC11706917
DOI 10.1007/s11046-024-00905-7
PII: 10.1007/s11046-024-00905-7
Knihovny.cz E-zdroje

The clinical diagnosis of dermatophytosis and identification of dermatophytes face challenges due to reliance on culture-based methods. Rapid, cost-effective detection techniques for volatile organic compounds (VOCs) have been developed for other microorganisms, but their application to dermatophytes is limited. This study explores using VOCs as diagnostic markers for dermatophytes. We compared VOC profiles across different dermatophyte taxa using solid-phase microextraction (SPME) and advanced analytical methods: gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS). We analyzed 47 dermatophyte strains from 15 taxa grown on sheep wool, including clinically significant species. Additionally, we examined phylogenetic relationships among the strains to correlate genetic relatedness with metabolite production. Our results showed that GC×GC-TOFMS offered superior resolution but similar differentiation of VOC profiles compared to GC-MS. VOC spectra allowed reliable distinction of taxonomic units at the species level and below, however, these distinctions showed only a slight correlation with phylogenetic data. We identified pan-dermatophyte and species- or strain-specific VOC profiles, indicating their potential for rapid, non-invasive detection of dermatophyte infections, including epidemic strains. These patterns could enable future taxa-specific identification. Our study highlights the potential of VOCs as tools for dermatophyte taxonomy and diagnosis.

Zobrazit více v PubMed

Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51:2–15. PubMed DOI

Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59. PubMed DOI PMC

Shen JJ, Arendrup MC, Verma S, Saunte DML. The emerging terbinafine-resistant PubMed DOI

Moulíková Š, Kolařík M, Lorch JM, Kolarczyková D, Hubka V, Čmoková A. Wild rodents harbour high diversity of PubMed DOI PMC

Saunte DML, Piraccini BM, Sergeev AY, Prohić A, Sigurgeirsson B, Rodríguez-Cerdeira C, Szepietowski JC, Faergemann J, et al. A survey among dermatologists: diagnostics of superficial fungal infections—what is used and what is needed to initiate therapy and assess efficacy? J Eur Acad Dermatol Venereol. 2019;33:421–7. PubMed DOI

Verrier J, Monod M. Diagnosis of dermatophytosis using molecular biology. Mycopathologia. 2017;182:193–202. PubMed DOI

Gräser Y, Monod M, Bouchara JP, Dukik K, Nenoff P, Kargl A, Kupsch C, Zhan P, et al. New insights in dermatophyte research. Med Mycol. 2018;56:S2-9. PubMed DOI

L’Ollivier C, Ranque S. MALDI-TOF-based dermatophyte identification. Mycopathologia. 2017;182:183–92. PubMed DOI

Uhrlaß S, Wittig F, Koch D, Krüger C, Harder M, Gaajetaan G, Dingemans G, Nenoff P. Do the new molecular assays—microarray and realtime polymerase chain reaction—for dermatophyte detection keep what they promise? Hautarzt Springer Verlag. 2019;70:618–26. PubMed DOI

Kondori N, Tehrani PA, Strömbeck L, Faergemann J. Comparison of dermatophyte PCR kit with conventional methods for detection of dermatophytes in skin specimens. Mycopathologia. 2013;176:237–41. PubMed DOI

Paugam A, L’Ollivier C, Viguié C, Anaya L, Mary C, De Ponfilly G, Ranque S. Comparison of real-time PCR with conventional methods to detect dermatophytes in samples from patients with suspected dermatophytosis. J Microbiol Methods. 2013;95:218–22. PubMed DOI

Wollina U, Hansel G, Uhrlaß S, Krüger C, Schönlebe J, Hipler UC, Nenoff P. Deep facial mycosis due to PubMed DOI

Tartor YH, Abo Hashem ME, Enany S. Towards a rapid identification and a novel proteomic analysis for dermatophytes from human and animal dermatophytosis. Mycoses. 2019;62:1116–26. PubMed DOI

Drerup KA, Brasch J. Successful PCR-based dermatophyte identification at species level in PAS-positive formalin-fixed skin biopsies and nail samples. JDDG - J Ger Soc Dermatology. 2023;21:789–91. PubMed

Pagans E, Font X, Sánchez A. Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater. 2006;131:179–86. PubMed DOI

Farraia MV, Cavaleiro Rufo J, Paciência I, Mendes F, Delgado L, Moreira A. The electronic nose technology in clinical diagnosis: a systematic review. Porto Biomed J. 2019;4: e42. PubMed DOI PMC

Wilson AD. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors. 2018;18:15–30. PubMed DOI PMC

Scheepers M, Al-Difaie Z, Brandts L, Peeters A, Van Grinsven B, Bouvy ND. Diagnostic performance of electronic noses in cancer diagnoses using exhaled breath: a systematic review and meta-analysis. JAMA Netw Open. 2022;5:E2219372. PubMed DOI PMC

Wörner J, Moelleken M, Dissemond J, Pein-Hackelbusch M. Supporting wound infection diagnosis: advancements and challenges with electronic noses. Front Sensors. 2023;4:1250756. DOI

Jenkins CL, Bean HD. Current limitations of staph infection diagnostics, and the role for VOCs in achieving culture-independent detection. Pathogens. 2023;12:181. PubMed DOI PMC

Casalinuovo IA, Di Pierro D, Coletta M, Di Francesco P. Application of electronic noses for disease diagnosis and food spoilage detection. Sensors. 2006;6:1428–39. DOI

Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res. 2008;112:231–40. PubMed DOI

Cedeño-Sanchez M, Charria-Girón E, Lambert C, Luangsa-Ard JJ, Decock C, Franke R, Brönstrup M, Stadler M. Segregation of the genus PubMed DOI PMC

Larsen TO, Frisvad JC. Characterization of volatile metabolites from 47 DOI

Larsen TO, Frisvad JC. Chemosystematics of DOI

Culberson CF, Kristinsson HD. A standardized method for the identification of lichen products. J Chromatogr A. 1970;46:85–93. PubMed DOI

Ratiu I-A, Bocos-Bintintan V, Monedeiro F, Milanowski M, Ligor T, Buszewski B. An optimistic vision of future: diagnosis of bacterial infections by sensing their associated volatile organic compounds. Crit Rev Anal Chem. 2020;50:501–12. PubMed DOI

Koo S, Thomas HR, Daniels SD, Lynch RC, Fortier SM, Shea MM, Rearden P, Comolli JC, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis. 2014;59:1733–40. PubMed DOI PMC

Rees CA, Stefanuto PH, Beattie SR, Bultman KM, Cramer RA, Hill JE. Sniffing out the hypoxia volatile metabolic signature of PubMed DOI PMC

Bastos ML, Benevides CA, Zanchettin C, Menezes FD, Inácio CP, de Lima Neto RG, Filho JGAT, Neves RP, Almeida LM. Breaking barriers in Candida spp. detection with electronic noses and artificial intelligence. Sci Rep. 2024. 10.1038/s41598-023-50332-9. PubMed DOI PMC

Li Y, Wei X, Zhou Y, Wang J, You R. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst Nanoeng. 2023;9:1–22. PubMed DOI PMC

Sahgal N, Magan N. Fungal volatile fingerprints: discrimination between dermatophyte species and strains by means of an electronic nose. Sensors Actuators, B Chem. 2008;131:117–20. DOI

Sahgal N, Monk B, Wasil M, Magan N. PubMed DOI

Matysik S, Herbarth O, Mueller A. Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents. Chemosphere. 2009;76:114–9. PubMed DOI

Bean HD, Dimandja JMD, Hill JE. Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;901:41–6. PubMed DOI PMC

Rees CA, Burklund A, Stefanuto PH, Schwartzman JD, Hill JE. Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J Breath Res. 2018;12:26001. PubMed DOI PMC

Prebihalo SE, Berrier KL, Freye CE, Bahaghighat HD, Moore NR, Pinkerton DK, et al. Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal Chem Am Chem Soc. 2018;90:505–32. PubMed DOI

Zou Y, Gaida M, Franchina FA, Stefanuto PH, Focant JF. Distinguishing between decaffeinated and regular coffee by HS-SPME-GC×GC-TOFMS, chemometrics, and machine learning. Molecules. 2022;27:1806. PubMed DOI PMC

Semerád J, Moeder M, Filip J, Pivokonský M, Filipová A, Cajthaml T. Oxidative stress in microbes after exposure to iron nanoparticles: analysis of aldehydes as oxidative damage products of lipids and proteins. Environ Sci Pollut Res. 2019;26:33670–82. PubMed DOI

Wenig P, Odermatt J. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinform. 2010;11:1–9. PubMed DOI PMC

Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–90. PubMed DOI

Team Core R. RA language and environment for statistical computing, R Foundation for Statistical. Computing. Vienna, Austria, 2022.

Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;21:1–20. DOI

Suzuki R, Terada Y, Shimodaira H. pvclust: hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 2.2. 2019.

Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25:1–18. DOI

Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. PubMed DOI

Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. DOI

Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. DOI

Kassambara A, Mundt F. factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. 2020.

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686. DOI

Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5. DOI

Garnier S, Ross N, Rudis R, Camargo AP, Sciaini M, Scherer C. Rvision—Colorblind-friendly color maps for R. R package version 0.6.2. 2021.

Auguie B. gridExtra: Miscellaneous functions for ‘Grid’ graphics. R package version 2.3. 2017.

Wilke C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1. 2020.

Liu Y, Wang Y, Zhang J. New machine learning algorithm: random forest. Lect Notes Comput Sci (incl Subser Lect Notes Artif Intell Lect Notes Bioinform). 2012;7473:246–52.

Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, et al. Resolving the taxonomy of emerging zoonotic pathogens in the DOI

Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2018;20:1160–6. PubMed DOI PMC

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3. PubMed

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. PubMed DOI PMC

Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. PubMed DOI PMC

Čmoková A, Rezaei-Matehkolaei A, Kuklová I, Kolařík M, Shamsizadeh F, Ansari S, Gharaghani M, Miňovská V. Discovery of new PubMed DOI PMC

Čmoková A, Kolařík M, Guillot J, Risco-Castillo V, Cabañes FJ, Nenoff P, Uhrlaß S, Dobiáš R, et al. Host-driven subspeciation in the hedgehog fungus, PubMed DOI PMC

Švarcová M, Větrovský T, Kolařík M, Hubka V. Defining the relationship between phylogeny, clinical manifestation, and phenotype for PubMed DOI PMC

Aboul-Ella H, Hamed R, Abo-Elyazeed H. Recent trends in rapid diagnostic techniques for dermatophytosis. Int J Vet Sci Med. 2020;8:115–23. PubMed DOI PMC

Aboul-Ella H, Sayed RH, Abo-Elyazeed HS. Development, preparation, and evaluation of a novel dotted lateral flow immunochromatographic kit for rapid diagnosis of dermatophytosis. Sci Rep. 2023. 10.1038/s41598-023-27443-4. PubMed DOI PMC

Begum J, Mir NA, Lingaraju MC, Buyamayum B, Dev K. Recent advances in the diagnosis of dermatophytosis. J Basic Microbiol. 2020;60:293–303. PubMed DOI

Castro MCA, Almeida LM, Ferreira RWM, Benevides CA, Zanchettin C, Menezes FD, Inacio CP, De Lima-Neto RG, et al. Breakthrough of clinical DOI

Kano R, Kimura U, Kakurai M, Hiruma J, Kamata H, Suga Y, Harada K. PubMed DOI

Batvandi A, Pchelin IM, Kiasat N, Kharazi M, Mohammadi R, Zomorodian K, Rezaei-Matehkolaei A. Time and cost-efficient identification of PubMed DOI

Guo Y, Jud W, Weikl F, Ghirardo A, Junker RR, Polle A, Benz JP, Pritsch K, Schnitzler JP, Rosenkranz M. Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol. 2021. 10.1038/s42003-021-02198-8. PubMed DOI PMC

Gualtieri L, Monti MM, Mele F, Russo A, Pedata PA, Ruocco M. Volatile organic compound (VOC) profiles of different PubMed DOI PMC

Fiedler N, Laumbach R, Kelly-McNeil K, Lioy P, Fan ZH, Zhang J, Ottenweller J, Ohman-Strickland P, Kipen H. Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ Health Perspect. 2005;113:1542–8. PubMed DOI PMC

Nilsson A, Kihlström E, Lagesson V, Wessén B, Szponar B, Larsson L, Tagesson C. Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air. 2004;14:74–82. PubMed DOI

Pasanen P, Korpi A, Kalliokoski P, Pasanen AL. Growth and volatile metabolite production of DOI

Hay JB, Mills SC. The migration of sebum and suint components along wool fibres of Merino sheep. Aust J Agric Res. 1982;33:817–25. DOI

Elling L, Zahn H. Characterization of proteinaceous contaminants extracted from scoured wool and wool top. Text Res J. 1989;59:460–3. DOI

Fawzi EM, Abd-Elmegeed MM, El-Mekkawi MF, El-Diasty EM, Morsi AM, Abd-Elfatah EB. Prevalence and some risk factors with therapeutic trial of sheep dermatophytosis in Egypt. Iraqi J Vet Sci. 2023;37:31–8. DOI

Dalis J, Kazeem H, Chah K. Occurrence of dermatophytosis among sheep and goats in Zaria. Nigeria Sokoto J Vet Sci. 2023;21:89–95. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...