Comparative gene expression analysis in closely related dermatophytes reveals secondary metabolism as a candidate driver of virulence

. 2025 Nov 04 ; 13 (11) : e0138325. [epub] 20251009

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid41065414

Grantová podpora
CZ.02.01.01/00/22_008/0004597 Ministry of Education
AV21 Program, CAS (VP33) Czech Academy of Sciences
LQ200202501 Czech Academy of Sciences
RVO: 61388971 Czech Academy of Sciences

Dermatophytes are important fungal skin pathogens affecting humans and animals worldwide. Although several virulence factors have been identified using genomic, proteomic, and transcriptomic approaches, their roles remain incompletely understood. In this study, we applied a comparative approach using four closely related taxa within the Trichophyton benhamiae complex, which differ in infectivity despite sharing common hosts. We focused on the emerging zoonotic pathogen T.benhamiae var. luteum, currently responsible for epidemic outbreaks in Europe, and compared it to its less infective relatives. A set of 16 candidate genes, informed by preliminary transcriptomic screening, was assessed via RT-qPCR across 12 strains grown in vitro (Sabouraud dextrose broth) and ex vivo (murine skin explants). Genes associated with secondary metabolism were consistently upregulated under ex vivo conditions, particularly in T.benhamiae var. luteum. While two of the biosynthetic gene clusters examined are linked to known metabolites, others remain uncharacterized. These findings reveal key gene expression differences that may explain the enhanced infectivity of emerging strains and underscore the potential role of secondary metabolites in dermatophyte virulence. They also highlight the need for improved genome annotation in T.benhamiae to better understand the molecular basis of pathogenesis.IMPORTANCETrichophyton benhamiae var. luteum is an emerging fungal pathogen responsible for a rising number of skin infections transmitted from guinea pigs to humans, especially in Europe. We investigated why this pathogen spreads more effectively than its close relatives, which infect the same hosts but are less epidemic. Using a laboratory model that mimics skin infection, we found that genes involved in producing fungal compounds-called secondary metabolites, some of which act as toxins-are more active in this pathogen. These compounds may help the fungus suppress the host immune response and establish infection. Our findings shed light on how fungal pathogens adapt to their hosts and highlight gene pathways that could be targeted in future diagnostics or treatments. Understanding these mechanisms is key to managing emerging fungal threats in both animals and humans.

Zobrazit více v PubMed

Havlickova B, Czaika VA, Friedrich M. 2008. Epidemiological trends in skin mycoses worldwide. Mycoses 51 Suppl 4:2–15. doi: 10.1111/j.1439-0507.2008.01606.x PubMed DOI

Shen JJ, Arendrup MC, Verma S, Saunte DML. 2022. The emerging terbinafine-resistant Trichophyton epidemic: what is the role of antifungal susceptibility testing? Dermatology 238:60–79. doi: 10.1159/000515290 PubMed DOI

Čmoková A, Rezaei-Matehkolaei A, Kuklová I, Kolařík M, Shamsizadeh F, Ansari S, Gharaghani M, Miňovská V, Najafzadeh MJ, Nouripour-Sisakht S, Yaguchi T, Zomorodian K, Zarrinfar H, Hubka V. 2021. Discovery of new Trichophyton members, T. persicum and T. spiraliforme spp. nov., as a cause of highly inflammatory tinea cases in Iran and Czechia. Microbiol Spectr 9:e0028421. doi: 10.1128/Spectrum.00284-21 PubMed DOI PMC

Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, Machová L, Maier T, Mallátová N, Man M, Mencl K, Nenoff P, Peano A, Prausová H, Stubbe D, Uhrlaß S, Větrovský T, Wiegand C, Hubka V. 2020. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers 104:333–387. doi: 10.1007/s13225-020-00465-3 DOI

Nenoff P, Uhrlaß S, Krüger C, Erhard M, Hipler UC, Seyfarth F, Herrmann J, Wetzig T, Schroedl W, Gräser Y. 2014. Trichophyton species of Arthroderma benhamiae - a new infectious agent in dermatology. J Dtsch Dermatol Ges 12:571–581. doi: 10.1111/ddg.12390 PubMed DOI

Bartosch T, Frank A, Günther C, Uhrlaß S, Heydel T, Nenoff P, Baums CG, Schrödl W. 2019. Trichophyton benhamiae and T. mentagrophytes target guinea pigs in a mixed small animal stock. Med Mycol Case Rep 23:37–42. doi: 10.1016/j.mmcr.2018.11.005 PubMed DOI PMC

Berlin M, Kupsch C, Ritter L, Stoelcker B, Heusinger A, Gräser Y. 2020. German-wide analysis of the prevalence and the propagation factors of the zoonotic dermatophyte Trichophyton benhamiae. JoF 6:161. doi: 10.3390/jof6030161 PubMed DOI PMC

Monod M. 2008. Secreted proteases from dermatophytes. Mycopathologia 166:285–294. doi: 10.1007/s11046-008-9105-4 PubMed DOI

Vermout S, Baldo A, Tabart J, Losson B, Mignon B. 2008. Secreted dipeptidyl peptidases as potential virulence factors for microsporum canis. FEMS Immunol Med Microbiol 54:299–308. doi: 10.1111/j.1574-695X.2008.00479.x PubMed DOI

Burstein VL, Beccacece I, Guasconi L, Mena CJ, Cervi L, Chiapello LS. 2020. Skin immunity to dermatophytes: from experimental infection models to human disease. Front Immunol 11:605644. doi: 10.3389/fimmu.2020.605644 PubMed DOI PMC

Matousek JL, Campbell KL. 2002. A comparative review of cutaneous pH. Vet Dermatol 13:293–300. doi: 10.1046/j.1365-3164.2002.00312.x PubMed DOI

Dahl MV. 1993. Suppression of immunity and inflammation by products produced by dermatophytes. J Am Acad Dermatol 28:S19–S23. doi: 10.1016/S0190-9622(09)80303-4 PubMed DOI

Kar B, Patel P, Free SJ. 2019. Trichophyton rubrum LysM proteins bind to fungal cell wall chitin and to the N-linked oligosaccharides present on human skin glycoproteins. PLoS One 14:e0215034. doi: 10.1371/journal.pone.0215034 PubMed DOI PMC

Martinez-Rossi NM, Persinoti GF, Peres NTA, Rossi A. 2012. Role of pH in the pathogenesis of dermatophytoses. Mycoses 55:381–387. doi: 10.1111/j.1439-0507.2011.02162.x PubMed DOI

Bitencourt TA, Neves-da-Rocha J, Martins MP, Sanches PR, Lang EAS, Bortolossi JC, Rossi A, Martinez-Rossi NM. 2021. StuA-Regulated processes in the dermatophyte Trichophyton rubrum: transcription profile, cell-cell adhesion, and immunomodulation. Front Cell Infect Microbiol 11:643659. doi: 10.3389/fcimb.2021.643659 PubMed DOI PMC

Maranhão FCA, Paião FG, Martinez-Rossi NM. 2007. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog 43:166–172. doi: 10.1016/j.micpath.2007.05.006 PubMed DOI

Wirth JC, Beesley TE, Anand SR. 1965. The isolation of xanthomegnin from several strains of the dermatophyte, Trichophyton rubrum. Phytochemistry 4:505–509. doi: 10.1016/S0031-9422(00)86204-4 DOI

Ng AS, Just G, Blank F. 1969. Metabolites of pathogenic fungi. VII. On the structure and stereochemistry of xanthomegnin, vioxanthin, and viopurpurin, pigments from Trichophyton violaceum. Can J Chem 47:1223–1227. doi: 10.1139/v69-197 DOI

Youngchim S, Pornsuwan S, Nosanchuk JD, Dankai W, Vanittanakom N. 2011. Melanogenesis in dermatophyte species in vitro and during infection. Microbiology (Reading) 157:2348–2356. doi: 10.1099/mic.0.047928-0 PubMed DOI PMC

Lappin-Scott HM, Rogers ME, Adlard MW, Holt G, Noble WC. 1985. High-performance liquid chromatographic identification of beta-lactam antibiotics produced by dermatophytes. J Appl Bacteriol 59:437–441. doi: 10.1111/j.1365-2672.1985.tb03343.x PubMed DOI

Kandemir H, Dukik K, Hagen F, Ilkit M, Gräser Y, de Hoog GS. 2020. Polyphasic discrimination of Trichophyton tonsurans and T. equinum from humans and horses. Mycopathologia 185:113–122. doi: 10.1007/s11046-019-00344-9 PubMed DOI

Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E, et al. 2012. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio 3:e00259-12. doi: 10.1128/mBio.00259-12 PubMed DOI PMC

Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, Pradervand S, Harshman K, Monod M. 2010. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology (Reading) 156:884–895. doi: 10.1099/mic.0.033464-0 PubMed DOI

Tran VDT, De Coi N, Feuermann M, Schmid-Siegert E, Băguţ E-T, Mignon B, Waridel P, Peter C, Pradervand S, Pagni M, Monod M. 2016. RNA sequencing-based genome reannotation of the dermatophyte Arthroderma benhamiae and characterization of its secretome and whole gene expression profile during Infection. mSystems 1:00036–16. doi: 10.1128/mSystems.00036-16 PubMed DOI PMC

Maciel Quatrin P, Flores Dalla Lana D, Andrzejewski Kaminski TF, Meneghello Fuentefria A. 2019. Fungal infection models: current progress of ex vivo methods. Mycoses 62:860–873. doi: 10.1111/myc.12961 PubMed DOI

Tabart J, Baldo A, Vermout S, Nusgens B, Lapiere C, Losson B, Mignon B. 2007. Reconstructed interfollicular feline epidermis as a model for Microsporum canis dermatophytosis. J Med Microbiol 56:971–975. doi: 10.1099/jmm.0.47115-0 PubMed DOI

Baumbach C-M, Schrödl W, Nenoff P, Uhrlaß S, Mülling CKW, Michler JK. 2020. Modeling dermatophytosis: Guinea pig skin explants represent a highly suitable model to study Trichophyton benhamiae infections. J Dermatol 47:8–16. doi: 10.1111/1346-8138.15150 PubMed DOI

Baumbach C-M, Michler JK, Nenoff P, Uhrlaß S, Schrödl W. 2020. Visualising virulence factors: Trichophyton benhamiaes subtilisins demonstrated in a guinea pig skin ex vivo model. Mycoses 63:970–978. doi: 10.1111/myc.13136 PubMed DOI

Ho F-H, Delgado-Charro MB, Bolhuis A. 2020. Evaluation of an explanted porcine skin model to investigate infection with the dermatophyte Trichophyton rubrum. Mycopathologia 185:233–243. doi: 10.1007/s11046-020-00438-9 PubMed DOI

Corzo-León DE, Munro CA, MacCallum DM. 2019. An ex vivo human skin model to study superficial fungal infections. Front Microbiol 10:1172. doi: 10.3389/fmicb.2019.01172 PubMed DOI PMC

Duek L, Kaufman G, Ulman Y, Berdicevsky I. 2004. The pathogenesis of dermatophyte infections in human skin sections. J Infect 48:175–180. doi: 10.1016/j.jinf.2003.09.008 PubMed DOI

Poumay Y, Dupont F, Marcoux S, Leclercq-Smekens M, Hérin M, Coquette A. 2004. A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res 296:203–211. doi: 10.1007/s00403-004-0507-y PubMed DOI

Peled IJ, Notea E, Lindenbaum E. 1991. Prolonged skin graft preservation with keratinocyte culture medium. Eur J Plast Surg 14:232–234. doi: 10.1007/BF00176637 DOI

Byun T, Kofod L, Blinkovsky A. 2001. Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a non-specific aminopeptidase in protein hydrolysis. J Agric Food Chem 49:2061–2063. doi: 10.1021/jf001091m PubMed DOI

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Zaugg C, Jousson O, Léchenne B, Staib P, Monod M. 2008. Trichophyton rubrum secreted and membrane-associated carboxypeptidases. Int J Med Microbiol 298:669–682. doi: 10.1016/j.ijmm.2007.11.005 PubMed DOI

Xie F, Xiao P, Chen D, Xu L, Zhang B. 2012. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80. doi: 10.1007/s11103-012-9885-2 PubMed DOI

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. doi: 10.1023/b:bile.0000019559.84305.47 PubMed DOI

Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 PubMed DOI

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12. doi: 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC

Jacob TR, Peres NTA, Persinoti GF, Silva LG, Mazucato M, Rossi A, Martinez-Rossi NM. 2012. Rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med Mycol 50:368–377. doi: 10.3109/13693786.2011.616230 PubMed DOI

Ciesielska Anita, Stączek P. 2018. Selection and validation of reference genes for qRT-PCR analysis of gene expression in Microsporum canis growing under different adhesion-inducing conditions. Sci Rep 8:1197. doi: 10.1038/s41598-018-19680-9 PubMed DOI PMC

Ciesielska A, Oleksak B, Stączek P. 2019. Reference genes for accurate evaluation of expression levels in Trichophyton interdigitale grown under different carbon sources, pH levels and phosphate levels. Sci Rep 9:5566. doi: 10.1038/s41598-019-42065-5 PubMed DOI PMC

Zaugg C, Monod M, Weber J, Harshman K, Pradervand S, Thomas J, Bueno M, Giddey K, Staib P. 2009. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell 8:241–250. doi: 10.1128/EC.00208-08 PubMed DOI PMC

Ganger MT, Dietz GD, Ewing SJ. 2017. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. BMC Bioinformatics 18:534. doi: 10.1186/s12859-017-1949-5 PubMed DOI PMC

R Core Team . 2022. R: a language and environment for statistical computing. Available from: https://www.R-project.org

Wickham H. 2007. Reshaping data with the reshape package. J Stat Softw 21:1–20. doi: 10.18637/jss.v021.i12 DOI

Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. doi: 10.18637/jss.v025.i01 DOI

Kassambara A, factoextra MF. 2020. R package version 1.0.7. Extract and Visualize the Results of Multivariate Data Analyses. Available from: https://CRAN.R-project.org/package=factoextra

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. JOSS 4:1686. doi: 10.21105/joss.01686 DOI

Valero-Mora PM. 2010. Ggplot2: elegant graphics for data analysis. J Stat Softw 35:212. doi: 10.18637/jss.v035.b01 DOI

Garnier S, Ross N, Rudis R, Camargo AP, Sciaini M, Scherer C. 2021. viridis: Colorblind friendly color maps for R. R package version 0.6.2. https://CRAN.R-project.org/package=viridis.

Auguie B. 2017. R package version 2.3. gridExtra: Miscellaneous Functions for “Grid” Graphics. Available from: https://CRAN.R-project.org/package=gridExtra

Wilke C. 2020. R Package Version 1.1.1. cowplot:Streamlined Plot Theme and Plot Annotations for “Ggplot2.” Available from: https://CRAN.R-project.org/package=cowplot

Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, van Wezel GP, Medema MH, Weber T. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51:W46–W50. doi: 10.1093/nar/gkad344 PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. doi: 10.1093/bib/bbx108 PubMed DOI PMC

Wilkins D. 2023. R package version 0.5.1. gggenes: draw gene arrow maps in “ggplot2.” Available from: https://CRAN.R-project.org/package=gggenes

Blum F. 1893. Der formaldehyde als hartungsmittle. Microsc Acta 10:314–315.

Mayer P. 1896. No Title, p 303. In Mitt. zool. Stn. Neapel

Lillie RD. 1965. Histopathologic technic and practical histochemistry. 3rd ed. McGraw-Hill Book Co, New York.

Avwioro G. 2011. Histochemical uses of haematoxylin - a review. Jpcs 1:24–34.

Wallwey C, Heddergott C, Xie X, Brakhage AA, Li SM. 2012. Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. Microbiology (Reading, Engl) 158:1634–1644. doi: 10.1099/mic.0.056796-0 PubMed DOI

Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B. 2002. Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo PubMed DOI

Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, Maréchal F, Galleni M, Mignon B. 2010. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol 162:990–997. doi: 10.1111/j.1365-2133.2009.09608.x PubMed DOI

Burmester A, Shelest E, Glöckner G, Heddergott C, Schindler S, Staib P, Heidel A, Felder M, Petzold A, Szafranski K, et al. 2011. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 12:R7. doi: 10.1186/gb-2011-12-1-r7 PubMed DOI PMC

Monod M, Léchenne B, Jousson O, Grand D, Zaugg C, Stöcklin R, Grouzmann E. 2005. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology (Reading) 151:145–155. doi: 10.1099/mic.0.27484-0 PubMed DOI

Kaufman G, Berdicevsky I, Woodfolk JA, Horwitz BA. 2005. Markers for host-induced gene expression in Trichophyton dermatophytosis. Infect Immun 73:6584–6590. doi: 10.1128/IAI.73.10.6584-6590.2005 PubMed DOI PMC

Bateman A. 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. doi: 10.1093/nar/gky1049 PubMed DOI PMC

Kornberg HL, Krebs HA. 1957. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179:988–991. doi: 10.1038/179988a0 PubMed DOI

Grumbt M, Defaweux V, Mignon B, Monod M, Burmester A, Wöstemeyer J, Staib P. 2011. Targeted gene deletion and in vivo analysis of putative virulence gene function in the pathogenic dermatophyte Arthroderma benhamiae. Eukaryot Cell 10:842–853. doi: 10.1128/EC.00273-10 PubMed DOI PMC

Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé JP. 2000. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889. doi: 10.1074/jbc.275.20.14882 PubMed DOI

Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH. 2014. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 6:1620–1634. doi: 10.1093/gbe/evu132 PubMed DOI PMC

Nielsen CAF, Folly C, Hatsch A, Molt A, Schröder H, O’Connor SE, Naesby M. 2014. The important ergot alkaloid intermediate chanoclavine-I produced in the yeast Saccharomyces cerevisiae by the combined action of EasC and EasE from Aspergillus japonicus PubMed DOI PMC

Fürtges L, Obermaier S, Thiele W, Foegen S, Müller M. 2019. Diversity in fungal intermolecular phenol coupling of polyketides: regioselective laccase-based systems. Chembiochem 20:1928–1932. doi: 10.1002/cbic.201900041 PubMed DOI

Ninomiya A, Masuda K, Yamada T, Kuroki M, Ban S, Yaguchi T, Urayama SI, Hagiwara D. 2025. Rediscovery of viomellein as an antibacterial compound and identification of its biosynthetic gene cluster in dermatophytes. Appl Environ Microbiol 91:e0243124. doi: 10.1128/aem.02431-24 PubMed DOI PMC

Fraser JA, Davis MA, Hynes MJ. 2002. A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Appl Environ Microbiol 68:2802–2808. doi: 10.1128/AEM.68.6.2802-2808.2002 PubMed DOI PMC

Hendrickson L, Ray Davis C, Roach C, Kim Nguyen D, Aldrich T, McAda PC, Reeves CD. 1999. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chemistry & Biology 6:429–439. doi: 10.1016/S1074-5521(99)80061-1 PubMed DOI

Yin WB, Chooi YH, Smith AR, Cacho RA, Hu Y, White TC, Tang Y. 2013. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth Biol 2:629–634. doi: 10.1021/sb400048b PubMed DOI PMC

Gu X, Yang S, Yang X, Yao L, Gao X, Zhang M, Liu W, Zhao H, Wang Q, Li Z, Li Z, Ding J. 2020. Comparative transcriptome analysis of two Cercospora sojina strains reveals differences in virulence under nitrogen starvation stress. BMC Microbiol 20:166. doi: 10.1186/s12866-020-01853-0 PubMed DOI PMC

Gai X, Li S, Jiang N, Sun Q, Xuan YH, Xia Z. 2022. Comparative transcriptome analysis reveals that ATP synthases regulate Fusarium oxysporum virulence by modulating sugar transporter gene expressions in tobacco. Front Plant Sci 13:978951. doi: 10.3389/fpls.2022.978951 PubMed DOI PMC

Chen B, Zhang J, Li J, Qian Y, Huang B, Wu X. 2024. Comparative transcriptome analysis of T. rubrum, T. mentagrophytes, and M. gypseum dermatophyte biofilms in response to photodynamic therapy. Mycopathologia 189:59. doi: 10.1007/s11046-024-00865-y PubMed DOI

Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG. 2011. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211. doi: 10.1007/s00294-011-0336-4 PubMed DOI

Delucca AJ, Dunn JJ, Lee LS, Ciegler A. 1982. Toxicity, mutagenicity and teratogenicity of brevianamide, viomellein and xanthomegnin; secondary metabolites of Penicillium viridicatum . J Food Saf 4:165–168. doi: 10.1111/j.1745-4565.1982.tb00440.x DOI

Yang X-Y, Cai S-X, Zhang W-J, Tang X-L, Shin H-Y, Lee J-Y, Gu Q-Q, Park H. 2008. Semi-vioxanthin isolated from marine-derived fungus regulates tumor necrosis factor-alpha, cluster of differentiation (CD) 80, CD86, and major histocompatibility complex class II expression in RAW264.7 cells via nuclear factor-kappaB and mitogen-activated protein kinase signaling pathways. Biol Pharm Bull 31:2228–2233. doi: 10.1248/bpb.31.2228 PubMed DOI

Chooi YH, Fang J, Liu H, Filler SG, Wang P, Tang Y. 2013. Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. Org Lett 15:780–783. doi: 10.1021/ol303435y PubMed DOI PMC

Machová L, Gaida M, Semerád J, Kolařík M, Švarcová M, Jašica A, Grasserová A, Awokunle Hollá S, Hubka V, Stefanuto PH, Cajthaml T, Focant JF, Wennrich A. 2025. First step on the way to identify dermatophytes using odour fingerprints. Mycopathologia 190:10. doi: 10.1007/s11046-024-00905-7 PubMed DOI PMC

Adams DJ. 2004. Fungal cell wall chitinases and glucanases. Microbiology (Reading) 150:2029–2035. doi: 10.1099/mic.0.26980-0 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...