Pervasive horizontal transmission of Wolbachia in natural populations of closely related and widespread tropical skipper butterflies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
n.014/2022/P
Grantová Agentura Jihoceska Univerzita
n.014/2022/P
Grantová Agentura Jihoceska Univerzita
GACR 22-35084J
Grantová Agentura České Republiky
GACR 22-35084J
Grantová Agentura České Republiky
GACR 22-35084J
Grantová Agentura České Republiky
220540/Z/20/A
Wellcome Trust - United Kingdom
PubMed
39773184
PubMed Central
PMC11706079
DOI
10.1186/s12866-024-03719-1
PII: 10.1186/s12866-024-03719-1
Knihovny.cz E-zdroje
- Klíčová slova
- Wolbachia, Double infection, Hesperiidae, Historical demography, Phylogenetics, Population dynamics, Skipper butterflies,
- MeSH
- fylogeneze * MeSH
- genom bakteriální genetika MeSH
- motýli * mikrobiologie MeSH
- sekvenování celého genomu * MeSH
- symbióza * MeSH
- Wolbachia * genetika klasifikace izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions. RESULTS: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region. We show that infection is maintained by high turnover rates driven mainly by pervasive horizontal transmissions, while also presenting novel cases of double infection by distantly related supergroups of Wolbachia in S. simplicius. CONCLUSIONS: Our results suggest that Wolbachia population dynamics is host species-specific, with genetic cohesiveness across wide geographical distributions. We demonstrate that low coverage whole genome sequencing data can be used for an exhaustive assessment of Wolbachia infection in natural populations of butterflies, as well as its dynamics in closely related host species. This ultimately leads to a better understanding of the endosymbiotic population dynamics of Wolbachia and its effects on the host's biology and evolution.
Biodiversity Unit Department of Biology Lund University Lund Sweden
Department of Zoology University of Cambridge Cambridge UK
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Functional Zoology Unit Department of Biology Lund University Lund Sweden
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Tree of Life Programme Wellcome Sanger Institute Wellcome Trust Genome Campus Hinxton Cambridge UK
Zobrazit více v PubMed
Gerth M, Röthe J, Bleidorn C. Tracing horizontal Wolbachia movements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. Mol Ecol. 2013;22(24):6149–62. PubMed
West SA, Cook JM, Werren JH, Godfray HCJ. Wolbachia in two insect host-parasitoid communities. Mol Ecol. 1998;7(11):1457–65. PubMed
Vancaester E, Blaxter M. Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project. PLoS Biol. 2023;21(1):e3001972. PubMed PMC
Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B Biol Sci. 2015;282(1807):3–8. PubMed PMC
Porter J, Sullivan W. The cellular lives of Wolbachia. Nat Rev Microbiol. 2023;21:750–66. PubMed
Hoffmann AA, Turelli M, Simmons GM. Unidirectional incompatibility between populations of Drosophila simulans. Evolution. 1986;40(4):692–701. PubMed
Hurst GDD, Jiggins FM. Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis. 2000;6(4):329–36. PubMed PMC
Stouthamer R. Wolbachia-induced parthenogenesis. In: O’Neill SL, Hoffmann AA, Werren JH, editors. Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press; 1997. pp. 102–24.
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741–51. PubMed
Li Y, Liu Z, Liu C, Shi Z, Pang L, Chen C, et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell. 2022;185(16):2975–87.e10. PubMed PMC
Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, et al. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res. 2008;18(2):272–80. PubMed PMC
Bandi C, Anderson TJC, Genchi C, Blaxter ML. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc B Biol Sci. 1998;265(1413):2407–13. PubMed PMC
Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution. 2009;63(1):165–83. PubMed
Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B, Antelope CX, et al. Rapid global spread of wRi-like Wolbachia across multiple Drosophila. Curr Biol. 2018;28(6):963–71.e8. PubMed PMC
Cooper BS, Vanderpool D, Conner WR, Matute DR, Turelli M. Wolbachia acquisition by Drosophila yakuba-clade hosts and transfer of incompatibility loci between distantly related Wolbachia. Genetics. 2019;212(4):1399–419. PubMed PMC
Huigens ME, De Almeida RP, Boons PAH, Luck RF, Stouthamer R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc B Biol Sci. 2004;271(1538):509–15. PubMed PMC
Turelli M, Hoffmann AA. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995;140(4):1319–38. PubMed PMC
Bailly-Bechet M, Martins-Simões P, Szöllosi GJ, Mialdea G, Sagot MF, Charlat S. How long does Wolbachia remain on board? Mol Biol Evol. 2017;34(5):1183–93. PubMed
Baldo L, Hotopp JCD, Jolley KA, Bordernstein SR, Biber SR, Raychoudhury R, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol. 2006;72(11):7098–110. PubMed PMC
Correa CC, Ballard JWO. Wolbachia associations with insects: winning or losing against a master manipulator. Front Ecol Evol. 2016;3:153.
Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog. 2013;9(9):e1003607. PubMed PMC
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ. 2018;6:e4629. PubMed PMC
Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. How many Wolbachia supergroups exist? Mol Biol Evol. 2002;19(3):341–6. PubMed
Duplouy A, Brattström O. Wolbachia in the genus Bicyclus: a forgotten player. Microb Ecol. 2018;75(1):255–63. PubMed PMC
Shastry V, Bell KL, Buerkle CA, Fordyce JA, Forister ML, Gompert Z, et al. A continental-scale survey of Wolbachia infections in blue butterflies reveals evidence of interspecific transfer and invasion dynamics. G3 Genes Genom Genet. 2022;12(10):jkac213. PubMed PMC
Tagami Y, Miura K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol Biol. 2004;13(4):359–64. PubMed
Chen X, Wang Z, Zhang C, Hu J, Lu Y, Zhou H, et al. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol. 2023;21(1):265. PubMed PMC
Li W, Cong Q, Shen J, Zhang J, Hallwachs W, Janzen DH, et al. Genomes of skipper butterflies reveal extensive convergence of wing patterns. Proc Natl Acad Sci USA. 2019;116(13):6232–7. PubMed PMC
Zhang J, Cong Q, Grishin NV. Thirteen new species of butterflies (Lepidoptera: Hesperiidae) from Texas. Insecta Mundi. 2023;0969:1–58. PubMed PMC
Twort VG, Blande D, Duplouy A. One’s trash is someone else’s treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts. BMC Microbiol. 2022;22(1):209. PubMed PMC
Twort VG, Minet J, Wheat CW, Wahlberg N. Museomics of a rare taxon: placing Whalleyanidae in the Lepidoptera Tree of Life. Syst Entomol. 2021;46(4):926–37.
Ribeiro P, Matos-Maraví P, Linke D, Meier J. The genome sequence of the Plain Longtail butterfly, Spicauda simplicius (Stoll, 1807) [version 1; peer review: 2 approved]. Wellcome Open Res. 2024;9:314. PubMed PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8. PubMed PMC
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. PubMed PMC
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34(13):i142–50. PubMed PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. PubMed PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. PubMed PMC
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020;20(4):892–905. PubMed PMC
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. PubMed
Shen J, Cong Q, Borek D, Otwinowski Z, Grishin NV. Complete genome of Achalarus lyciades, the first representative of the Eudaminae subfamily of skippers. Curr Genomics. 2017;18(4):366–74. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. PubMed PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. PubMed PMC
Andermann T, Cano Á, Zizka A, Bacon C, Antonelli A. SECAPR - A bioinformatics pipeline for the rapid and user-friendly processing of targeted enriched Illumina sequences, from raw reads to alignments. PeerJ. 2018;6:e5175. PubMed PMC
Ribeiro PG, Torres Jiménez MF, Andermann T, Antonelli A, Bacon CD, Matos-Maraví P. A bioinformatic platform to integrate target capture and whole genome sequences of various read depths for phylogenomics. Mol Ecol. 2021;30(23):6021–35. PubMed PMC
Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R, Toussaint EFA, et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr Biol. 2018;28(5):770–778.e5. PubMed
Wang X, Xiong X, Cao W, Zhang C, Werren JH, Wang X. Phylogenomic analysis of Wolbachia strains reveals patterns of genome evolution and recombination. Genome Biol Evol. 2020;12(12):2508–20. PubMed PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. PubMed PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34(3):772–3. PubMed
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol. 2014;14:82. PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. PubMed PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. PubMed
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. PubMed
Valerio F, Twort VG, Duplouy A. A worked example of screening genomic material for the presence of Wolbachia infection. In: Fallon A, editor. Wolbachia. Methods in molecular biology. New York, NY: Humana; 2023. pp. 275–99. PubMed
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22(5):1185–92. PubMed
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15(4):e1006650. PubMed PMC
Heller R, Chikhi L, Siegismund HR. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE. 2013;8(5):e62992. PubMed PMC
Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. PubMed PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67(5):901–4. PubMed PMC
Narita S, Nomura M, Kageyama D. Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiol Ecol. 2007;61(2):235–45. PubMed
Reuter M, Keller L. High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. Mol Biol Evol. 2003;20(5):748–53. PubMed
Scholz M, Albanese D, Rota-Stabelli O, Donati C, Segata N. Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun. 2020;11(1):5235. PubMed PMC
Wolfe TM, Bruzzese DJ, Klasson L, Corretto E, Lečić S, Stauffer C, et al. Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies. Mol Ecol. 2021;30(23):6259–72. PubMed PMC
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet. 2024; 25:416–30. PubMed
Ellis EA, Storer CG, Kawahara AY. De novo genome assemblies of butterflies. Gigascience. 2021;10(6):giab041. PubMed PMC
Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, Pauls SU, et al. Long reads are revolutionizing 20 years of insect genome sequencing. Genome Biol Evol. 2021;13(8):evab138. PubMed PMC
Linke D, Hernandez Mejia J, Eche Navarro VNP, Salinas Sánchez L, Ribeiro PG, Elias M, Matos-Maraví P. Reduced palatability, fast flight, and tails: decoding the defence arsenal of Eudaminae skipper butterflies in a neotropical locality. J Evol Biol. 2024;37(9):1064–75. PubMed