Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Z01 HD000196
Intramural NIH HHS - United States
Z01:HD000196-25
HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
LX22NPO5103
European Union - Next Generation EU
61388963
The Academy of the Czech Republic RVO
PubMed
38627600
PubMed Central
PMC11099152
DOI
10.1038/s44318-024-00096-3
PII: 10.1038/s44318-024-00096-3
Knihovny.cz E-zdroje
- Klíčová slova
- Golgi Complex, Membrane Contact Sites, Non-Vesicular Lipid Transport, Phosphatidylinositol, Phospholipase C,
- MeSH
- buněčná membrána metabolismus MeSH
- endozomy metabolismus MeSH
- fosfatidylinositoly * metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- organely metabolismus MeSH
- proteiny přenášející fosfolipidy * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.
Zobrazit více v PubMed
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC
Alb JG, Jr., Cortese JD, Phillips SE, Albin RL, Nagy TR, Hamilton BA, Bankaitis VA. Mice lacking phosphatidylinositol transfer protein-alpha exhibit spinocerebellar degeneration, intestinal and hepatic steatosis, and hypoglycemia. J Biol Chem. 2003;278:33501–33518. doi: 10.1074/jbc.M303591200. PubMed DOI PMC
Alb JG, Jr., Phillips SE, Rostand K, Cui X, Pinxteren J, Cotlin L, Manning T, Guo S, York JD, Sontheimer H, et al. Genetic ablation of phosphatidylinositol transfer protein function in murine embryonic stem cells. Mol Biol Cell. 2002;13:739–754. doi: 10.1091/mbc.01-09-0457. PubMed DOI PMC
Alb JG, Jr., Phillips SE, Wilfley LR, Philpot BD, Bankaitis VA. The pathologies associated with functional titration of phosphatidylinositol transfer protein alpha activity in mice. J Lipid Res. 2007;48:1857–1872. doi: 10.1194/jlr.M700145-JLR200. PubMed DOI
Ashlin TG, Blunsom NJ, Cockcroft S. Courier service for phosphatidylinositol: PITPs deliver on demand. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866:158985. doi: 10.1016/j.bbalip.2021.158985. PubMed DOI PMC
Baba T, Balla T. Emerging roles of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate as regulators of multiple steps in autophagy. J Biochem. 2020;168:329–336. doi: 10.1093/jb/mvaa089. PubMed DOI PMC
Baba T, Toth DJ, Sengupta N, Kim YJ, Balla T. Phosphatidylinositol 4,5-bisphosphate controls Rab7 and PLEKHM1 membrane cycling during autophagosome-lysosome fusion. EMBO J. 2019;38:e100312. doi: 10.15252/embj.2018100312. PubMed DOI PMC
Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. PubMed DOI PMC
Berne D, Ladmiral V, Leclerc E, Caillol S. Thia-Michael reaction: the route to promising covalent adaptable networks. Polymers. 2022;14:4457. doi: 10.3390/polym14204457. PubMed DOI PMC
Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, Snead M, Brown R, Morrison A, Wilson S, et al. Pharmacological and genetic targeting of pPI4KA reveals its important role in maintaining plasma membrane PtdIns4p and PtdIns(4,5)p2 levels. J Biol Chem. 2014;289:6120–6132. doi: 10.1074/jbc.M113.531426. PubMed DOI PMC
Boura E, Nencka R. Phosphatidylinositol 4-kinases: function, structure, and inhibition. Exp Cell Res. 2015;337:136–145. doi: 10.1016/j.yexcr.2015.03.028. PubMed DOI
Carvou N, Holic R, Li M, Futter C, Skippen A, Cockcroft S. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum. J Cell Sci. 2010;123:1262–1273. doi: 10.1242/jcs.061986. PubMed DOI PMC
Chang CL, Liou J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J Biol Chem. 2015;290:14289–14301. doi: 10.1074/jbc.M114.621375. PubMed DOI PMC
Chang CL, Liou J. Homeostatic regulation of the PI(4,5)P2-Ca(2+) signaling system at ER-PM junctions. Biochim Biophys Acta. 2016;1861:862–873. doi: 10.1016/j.bbalip.2016.02.015. PubMed DOI PMC
Chinthalapudi K, Mandati V, Zheng J, Sharff AJ, Bricogne G, Griffin PR, Kissil J, Izard T. Lipid binding promotes the open conformation and tumor-suppressive activity of neurofibromin 2. Nat Commun. 2018;9:1338. doi: 10.1038/s41467-018-03648-4. PubMed DOI PMC
Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science. 2015;349:428–432. doi: 10.1126/science.aab1370. PubMed DOI PMC
Cockcroft S, Carvou N. Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim Biophys Acta. 2007;1771:677–691. doi: 10.1016/j.bbalip.2007.03.009. PubMed DOI
Cockcroft S, Garner K. Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit Rev Biochem Mol Biol. 2011;46:89–117. doi: 10.3109/10409238.2010.538664. PubMed DOI
D’Angelo G, Vicinanza M, Wilson C, De Matteis MA. Phosphoinositides in Golgi complex function. Subcell Biochem. 2012;59:255–270. doi: 10.1007/978-94-007-3015-1_8. PubMed DOI
Dickeson SK, Lim CN, Schuyler GT, Dalton TP, Helmkamp GM, Jr., Yarbrough LR. Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein. J Biol Chem. 1989;264:16557–16564. doi: 10.1016/S0021-9258(19)84743-9. PubMed DOI
Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA. 2009;106:2136–2141. doi: 10.1073/pnas.0811700106. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Grabon A, Bankaitis VA, McDermott MI. The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res. 2019;60:242–268. doi: 10.1194/jlr.R089730. PubMed DOI PMC
Grabon A, Khan D, Bankaitis VA. Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. Biochim Biophys Acta. 2015;1851:724–735. doi: 10.1016/j.bbalip.2014.12.011. PubMed DOI PMC
Grabon A, Orlowski A, Tripathi A, Vuorio J, Javanainen M, Rog T, Lonnfors M, McDermott MI, Siebert G, Somerharju P, et al. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. J Biol Chem. 2017;292:14438–14455. doi: 10.1074/jbc.M117.791467. PubMed DOI PMC
Gulyas G, Korzeniowski MK, Eugenio CEB, Vaca L, Kim YJ, Balla T. LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell calcium. 2022;106:102631. doi: 10.1016/j.ceca.2022.102631. PubMed DOI PMC
Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science. 2012;337:727–730. doi: 10.1126/science.1222483. PubMed DOI PMC
Hammond GR, Machner MP, Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol. 2014;205:113–126. doi: 10.1083/jcb.201312072. PubMed DOI PMC
Hammond GRV, Ricci MMC, Weckerly CC, Wills RC. An update on genetically encoded lipid biosensors. Mol Biol Cell. 2022;33:tp2. doi: 10.1091/mbc.E21-07-0363. PubMed DOI PMC
Hara S, Swigart P, Jones D, Cockcroft S. The first 5 amino acids of the carboxyl terminus of phosphatidylinositol transfer protein (PITP) alpha play a critical role in inositol lipid signaling. Transfer activity of PITP is essential but not sufficient for restoration of phospholipase C signaling. J Biol Chem. 1997;272:14908–14913. doi: 10.1074/jbc.272.23.14908. PubMed DOI
Hay JC, Martin TFJ. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature. 1993;366:572–575. doi: 10.1038/366572a0. PubMed DOI
Helmkamp GM, Jr., Harvey MS, Wirtz KW, Van Deenen LL. Phospholipid exchange between membranes. Purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol. J Biol Chem. 1974;249:6382–6389. doi: 10.1016/S0021-9258(19)42169-8. PubMed DOI
Herzog R, Schuhmann K, Schwudke D, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A. LipidXplorer: a software for consensual cross-platform lipidomics. PLoS ONE. 2012;7:e29851. doi: 10.1371/journal.pone.0029851. PubMed DOI PMC
Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 2011;12:R8. doi: 10.1186/gb-2011-12-1-r8. PubMed DOI PMC
Hong AW, Meng Z, Plouffe SW, Lin Z, Zhang M, Guan KL. Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes Dev. 2020;34:511–525. doi: 10.1101/gad.333435.119. PubMed DOI PMC
Huang J, Mousley CJ, Dacquay L, Maitra N, Drin G, He C, Ridgway ND, Tripathi A, Kennedy M, Kennedy BK, et al. A lipid transfer protein signaling axis exerts dual control of cell-cycle and membrane trafficking systems. Dev Cell. 2018;44:378–391.e375. doi: 10.1016/j.devcel.2017.12.026. PubMed DOI PMC
Hunyady L, Baukal AJ, Gaborik Z, Olivares-Reyes JA, Bor M, Szaszak M, Lodge R, Catt KJ, Balla T. Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1 angiotensin receptor. J Cell Biol. 2002;157:1211–1222. doi: 10.1083/jcb.200111013. PubMed DOI PMC
Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Kim S, Kedan A, Marom M, Gavert N, Keinan O, Selitrennik M, Laufman O, Lev S. The phosphatidylinositol-transfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling. EMBO Rep. 2013;14:891–899. doi: 10.1038/embor.2013.113. PubMed DOI PMC
Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev Cell. 2015;33:549–561. doi: 10.1016/j.devcel.2015.04.028. PubMed DOI PMC
Kim YJ, Sengupta N, Sohn M, Mandal A, Pemberton JG, Choi U, Balla T. Metabolic routing maintains the unique fatty acid composition of phosphoinositides. EMBO Rep. 2022;23:e54532. doi: 10.15252/embr.202154532. PubMed DOI PMC
Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol. 2010;11:739–750. doi: 10.1038/nrm2971. PubMed DOI
Li FL, Fu V, Liu G, Tang T, Konradi AW, Peng X, Kemper E, Cravatt BF, Franklin JM, Wu Z, et al. Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nat Chem Biol. 2022;18:1076–1086. doi: 10.1038/s41589-022-01061-z. PubMed DOI
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid exchangers: cellular functions and mechanistic links with phosphoinositide metabolism. Front Cell Dev Biol. 2020;8:663. doi: 10.3389/fcell.2020.00663. PubMed DOI PMC
Lykidis A, Jackson PD, Rock CO, Jackowski S. The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. J Biol Chem. 1997;272:33402–33409. doi: 10.1074/jbc.272.52.33402. PubMed DOI
Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature. 2013;501:257–261. doi: 10.1038/nature12430. PubMed DOI
Mani T, Hennigan RF, Foster LA, Conrady DG, Herr AB, Ip W. FERM domain phosphoinositide binding targets merlin to the membrane and is essential for its growth-suppressive function. Mol Cell Biol. 2011;31:1983–1996. doi: 10.1128/MCB.00609-10. PubMed DOI PMC
Mejdrova I, Chalupska D, Kogler M, Sala M, Plackova P, Baumlova A, Hrebabecky H, Prochazkova E, Dejmek M, Guillon R, et al. Highly selective phosphatidylinositol 4-kinase IIIbeta inhibitors and structural insight into their mode of action. J Med Chem. 2015;58:3767–3793. doi: 10.1021/acs.jmedchem.5b00499. PubMed DOI
Mesmin B, Antonny B. The counterflow transport of sterols and PI4P. Biochim Biophys Acta. 2016;1861:940–951. doi: 10.1016/j.bbalip.2016.02.024. PubMed DOI
Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J. 2017;36:3156–3174. doi: 10.15252/embj.201796687. PubMed DOI PMC
Moser von Filseck J, Copic A, Delfosse V, Vanni S, Jackson CL, Bourguet W, Drin G. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science. 2015;349:432–436. doi: 10.1126/science.aab1346. PubMed DOI
Mousley CJ, Davison JM, Bankaitis VA. Sec14 like PITPs couple lipid metabolism with phosphoinositide synthesis to regulate golgi functionality. Subcell Biochem. 2012;59:271–287. doi: 10.1007/978-94-007-3015-1_9. PubMed DOI PMC
Nakanishi S, Catt KJ, Balla T. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci USA. 1995;92:5317–5321. doi: 10.1073/pnas.92.12.5317. PubMed DOI PMC
Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J Cell Biol. 2020;219:e201906130. doi: 10.1083/jcb.201906130. PubMed DOI PMC
Phillips SE, Ile KE, Boukhelifa M, Huijbregts RP, Bankaitis VA. Specific and nonspecific membrane-binding determinants cooperate in targeting phosphatidylinositol transfer protein beta-isoform to the mammalian trans-Golgi network. Mol Biol Cell. 2006;17:2498–2512. doi: 10.1091/mbc.e06-01-0089. PubMed DOI PMC
Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol. 2020;21:7–24. doi: 10.1038/s41580-019-0180-9. PubMed DOI PMC
Raghu P, Basak B, Krishnan H. Emerging perspectives on multidomain phosphatidylinositol transfer proteins. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866:158984. doi: 10.1016/j.bbalip.2021.158984. PubMed DOI PMC
Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, et al. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell. 2008;29:191–206. doi: 10.1016/j.molcel.2007.11.026. PubMed DOI PMC
Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P. Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J. 2002;21:2117–2121. doi: 10.1093/emboj/21.9.2117. PubMed DOI PMC
Shadan S, Holic R, Carvou N, Ee P, Li M, Murray-Rust J, Cockcroft S. Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells. Traffic. 2008;9:1743–1756. doi: 10.1111/j.1600-0854.2008.00794.x. PubMed DOI PMC
Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature. 1998;394:494–498. doi: 10.1038/28879. PubMed DOI
Sohn M, Ivanova P, Brown HA, Toth DJ, Varnai P, Kim YJ, Balla T. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. Proc Natl Acad Sci USA. 2016;113:4314–4319. doi: 10.1073/pnas.1525719113. PubMed DOI PMC
Surma MA, Gerl MJ, Herzog R, Helppi J, Simons K, Klose C. Mouse lipidomics reveals inherent flexibility of a mammalian lipidome. Sci Rep. 2021;11:19364. doi: 10.1038/s41598-021-98702-5. PubMed DOI PMC
Tan J, Oh K, Burgess J, Hipfner DR, Brill JA. PI4KIIIalpha is required for cortical integrity and cell polarity during Drosophila oogenesis. J Cell Sci. 2014;127:954–966. doi: 10.1242/jcs.154898. PubMed DOI
Thomas GMH, Cunningham E, Fensome A, Ball A, Totty NF, Truong O, Hsuan JJ, Cockcroft S. An essential role of phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling. Cell. 1993;74:919–928. doi: 10.1016/0092-8674(93)90471-2. PubMed DOI
Tilley SJ, Skippen A, Murray-Rust J, Swigart PM, Stewart A, Morgan CP, Cockcroft S, McDonald NQ. Structure-function analysis of human phosphatidylinositol transfer protein alpha bound to phosphatidylinositol. Structure. 2004;12:317–326. doi: 10.1016/j.str.2004.01.013. PubMed DOI
Toth B, Balla A, Ma H, Knight ZA, Shokat KM, Balla T. Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi. J Biol Chem. 2006;281:36369–36377. doi: 10.1074/jbc.M604935200. PubMed DOI
Toth JT, Gulyas G, Hunyady L, Varnai P. Development of nonspecific BRET-based biosensors to monitor plasma membrane inositol lipids in living cells. Methods Mol Biol. 2019;1949:23–34. doi: 10.1007/978-1-4939-9136-5_3. PubMed DOI
Toth JT, Gulyas G, Toth DJ, Balla A, Hammond GR, Hunyady L, Balla T, Varnai P. BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim Biophys Acta. 2016;1861:177–187. doi: 10.1016/j.bbalip.2015.12.005. PubMed DOI PMC
Tremblay JM, Li H, Yarbrough LR, Helmkamp GM., Jr Modifications of cysteine residues in the solution and membrane-associated conformations of phosphatidylinositol transfer protein have differential effects on lipid transfer activity. Biochemistry. 2001;40:9151–9158. doi: 10.1021/bi0107896. PubMed DOI
Tremblay JM, Voziyan PA, Helmkamp GM, Jr., Yarbrough LR. The C-terminus of phosphatidylinositol transfer protein modulates membrane interactions and transfer activity but not phospholipid binding. Biochim Biophys Acta. 1998;1389:91–100. PubMed
Voziyan PA, Tremblay JM, Yarbrough LR, Helmkamp GM., Jr Truncations of the C-terminus have different effects on the conformation and activity of phosphatidylinositol transfer protein. Biochemistry. 1996;35:12526–12531. doi: 10.1021/bi960562o. PubMed DOI
Waugh MG. The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer) Biochem J. 2019;476:2321–2346. doi: 10.1042/BCJ20180622. PubMed DOI
Wirtz KW, Zilversmit DB. Participation of soluble liver proteins in the exchange of membrane phospholipids. Biochim Biophys Acta. 1969;193:105–116. doi: 10.1016/0005-2736(69)90063-7. PubMed DOI
Xie Z, Hur SK, Zhao L, Abrams CS, Bankaitis VA. A golgi lipid signaling pathway controls apical golgi distribution and cell polarity during neurogenesis. Dev Cell. 2018;44:725–740.e724. doi: 10.1016/j.devcel.2018.02.025. PubMed DOI PMC
Yadav S, Garner K, Georgiev P, Li M, Gomez-Espinosa E, Panda A, Mathre S, Okkenhaug H, Cockcroft S, Raghu P. RDGBalpha, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction. J Cell Sci. 2015;128:3330–3344. PubMed PMC
Yan Y, Denef N, Tang C, Schupbach T. Drosophila PI4KIIIalpha is required in follicle cells for oocyte polarization and Hippo signaling. Development. 2011;138:1697–1703. doi: 10.1242/dev.059279. PubMed DOI PMC
Yoder MD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GM., Jr Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J Biol Chem. 2001;276:9246–9252. doi: 10.1074/jbc.M010131200. PubMed DOI
Zewe JP, Miller AM, Sangappa S, Wills RC, Goulden BD, Hammond GRV. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. J Cell Biol. 2020;219:e201906127. doi: 10.1083/jcb.201906127. PubMed DOI PMC
Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Krishnaswamy S, Cockcroft S, Anderson KE, Weiderhold B, Abrams CS. Individual phosphatidylinositol transfer proteins have distinct functions that do not involve lipid transfer activity. Blood Adv. 2023;7:4233–4246. doi: 10.1182/bloodadvances.2022008735. PubMed DOI PMC
Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Lian L, Fairn GD, Cockcroft S, Durham A, Krishnaswamy S, et al. Phosphatidylinositol transfer protein-alpha in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nat Commun. 2017;8:1216. doi: 10.1038/s41467-017-01181-4. PubMed DOI PMC