S-(4-Nitrobenzyl)-6-thioinosine (NBMPR) is Not a Selective Inhibitor of Equilibrative Nucleoside Transporters but Also Blocks Efflux Activity of Breast Cancer Resistance Protein
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-16169S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
PubMed
32086630
DOI
10.1007/s11095-020-2782-5
PII: 10.1007/s11095-020-2782-5
Knihovny.cz E-zdroje
- Klíčová slova
- NBMPR, breast cancer resistance protein, equilibrative nucleoside transporters, inhibition, selectivity,
- MeSH
- ABC transportér z rodiny G, člen 2 antagonisté a inhibitory metabolismus MeSH
- antivirové látky metabolismus farmakokinetika MeSH
- biologický transport účinky léků MeSH
- buněčné linie MeSH
- buňky MDCK MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- nádorové proteiny antagonisté a inhibitory metabolismus MeSH
- P-glykoproteiny antagonisté a inhibitory metabolismus MeSH
- placenta účinky léků metabolismus MeSH
- potkani Wistar MeSH
- psi MeSH
- těhotenství MeSH
- thioinosin analogy a deriváty farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- psi MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-nitrobenzylthioinosine MeSH Prohlížeč
- ABC transportér z rodiny G, člen 2 MeSH
- ABCB1 protein, human MeSH Prohlížeč
- ABCG2 protein, human MeSH Prohlížeč
- antivirové látky MeSH
- nádorové proteiny MeSH
- P-glykoproteiny MeSH
- thioinosin MeSH
PURPOSE: S-(4-Nitrobenzyl)-6-thioinosine (NBMPR) is routinely used at concentrations of 0.10 μM and 0.10 mM to specifically inhibit transport of nucleosides mediated by equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2), respectively. We recently showed that NBMPR (0.10 mM) might also inhibit placental active efflux of [3H]zidovudine and [3H]tenofovir disoproxil fumarate. Here we test the hypothesis that NBMPR abolishes the activity of P-glycoprotein (ABCB1) and/or breast cancer resistance protein (ABCG2). METHODS: We performed accumulation assays with Hoechst 33342 (a model dual substrate of ABCB1 and ABCG2) and bi-directional transport studies with the ABCG2 substrate [3H]glyburide in transduced MDCKII cells, accumulation studies in choriocarcinoma-derived BeWo cells, and in situ dual perfusions of rat term placenta with glyburide. RESULTS: NBMPR inhibited Hoechst 33342 accumulation in MDCKII-ABCG2 cells (IC50 = 53 μM) but not in MDCKII-ABCB1 and MDCKII-parental cells. NBMPR (0.10 mM) also inhibited bi-directional [3H]glyburide transport across monolayers of MDCKII-ABCG2 cells and blocked ABCG2-mediated [3H]glyburide efflux by rat term placenta in situ. CONCLUSION: NBMPR at a concentration of 0.10 mM abolishes ABCG2 activity. Researchers using NBMPR to evaluate the effect of ENTs on pharmacokinetics must therefore interpret their results carefully if studying compounds that are substrates of both ENTs and ABCG2.
Zobrazit více v PubMed
Biochem Pharmacol. 2019 May;163:60-70 PubMed
J Pharm Sci. 2011 Sep;100(9):3959-67 PubMed
Circ Res. 2006 Sep 1;99(5):510-9 PubMed
Pharm Res. 2008 Jul;25(7):1647-53 PubMed
Mol Pharmacol. 1980 Jul;18(1):40-4 PubMed
Curr Vasc Pharmacol. 2009 Oct;7(4):426-34 PubMed
Epilepsia. 2006 Mar;47(3):461-8 PubMed
Antimicrob Agents Chemother. 2016 Aug 22;60(9):5563-72 PubMed
J Biol Chem. 1990 Jun 15;265(17):9732-6 PubMed
Drug Metab Dispos. 2019 Jul;47(7):699-709 PubMed
J Biol Chem. 1997 Nov 7;272(45):28423-30 PubMed
Can J Biochem. 1972 Jul;50(7):839-40 PubMed
Cancer Res. 2011 Mar 1;71(5):1781-91 PubMed
Front Pharmacol. 2018 Jun 06;9:606 PubMed
Cancer Res. 2007 Jul 15;67(14):6965-72 PubMed
Reprod Toxicol. 2018 Aug;79:57-65 PubMed
Drug Metab Dispos. 2005 Apr;33(4):518-23 PubMed
Eur J Pharmacol. 2007 Feb 14;557(1):1-8 PubMed
J Pharmacol Exp Ther. 2006 Oct;319(1):53-62 PubMed
AIDS. 2014 Jan 2;28(1):9-17 PubMed
J Pharmacol Exp Ther. 2009 Dec;331(3):1118-25 PubMed
Placenta. 2008 May;29(5):461-7 PubMed
Mol Pharm. 2018 Jul 2;15(7):2732-2741 PubMed
Eur J Cancer. 2015 Sep;51(14):2008-21 PubMed
Biochem Pharmacol. 2019 May;163:290-298 PubMed
Trends Pharmacol Sci. 2010 Jan;31(1):22-35 PubMed
Mol Pharmacol. 2008 Mar;73(3):949-59 PubMed
Reprod Toxicol. 2015 Nov;57:176-82 PubMed
Front Pharmacol. 2015 Feb 10;6:13 PubMed
Am J Obstet Gynecol. 2010 Apr;202(4):383.e1-7 PubMed
Compr Physiol. 2018 Jun 18;8(3):1003-1017 PubMed
J Pharm Sci. 2019 Dec;108(12):3917-3922 PubMed
Placenta. 2017 Dec;60:86-92 PubMed
J Membr Biol. 1986;93(1):1-10 PubMed
J Biol Chem. 1998 Nov 13;273(46):30818-25 PubMed
Drug Metab Pharmacokinet. 2012;27(4):439-46 PubMed
Biochem Pharmacol. 2018 Aug;154:10-17 PubMed
Drug Metab Dispos. 2018 Nov;46(11):1817-1826 PubMed
Pflugers Arch. 1999 Apr;437(5):652-60 PubMed
Biopharm Drug Dispos. 2016 Jan;37(1):28-38 PubMed
Pharm Res. 2007 Mar;24(3):450-70 PubMed
Clin Exp Pharmacol Physiol. 2006 Jan-Feb;33(1-2):58-65 PubMed
Oncotarget. 2017 Apr 4;8(14):23073-23086 PubMed
J Biol Chem. 2001 Nov 30;276(48):45270-5 PubMed