Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
19-02290S
Grantová Agentura České Republiky
SVV 260435
Přírodovědecká Fakulta, Univerzita Karlova
SVV 20604315
Přírodovědecká Fakulta, Univerzita Karlova
PubMed
33799995
PubMed Central
PMC8001847
DOI
10.3390/cells10030588
PII: cells10030588
Knihovny.cz E-zdroje
- Klíčová slova
- clinical trials, experimental models, mesenchymal stem cells, retinal degenerative diseases, stem cell therapy,
- MeSH
- autologní transplantace MeSH
- buněčná a tkáňová terapie metody MeSH
- buněčná diferenciace MeSH
- buňky kostní dřeně cytologie metabolismus MeSH
- diabetická retinopatie genetika metabolismus patologie terapie MeSH
- glaukom genetika metabolismus patologie terapie MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- makulární degenerace genetika metabolismus patologie terapie MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- mezibuněčné signální peptidy a proteiny genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- neurotrofní faktory genetika metabolismus MeSH
- retina metabolismus patologie MeSH
- retinopathia pigmentosa genetika metabolismus patologie terapie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- tuková tkáň cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mezibuněčné signální peptidy a proteiny MeSH
- neurotrofní faktory MeSH
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Zobrazit více v PubMed
Shaw P.X., Stiles T., Douglas C., Ho D., Fan W., Du H., Xiao X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol. Sci. 2016;3:196–221. doi: 10.3934/molsci.2016.2.196. PubMed DOI PMC
Semeraro F., Cancarini A., Dell’Omo R., Rezzola S., Romano M.R., Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J. Diabetes Res. 2015;2015:1–16. doi: 10.1155/2015/582060. PubMed DOI PMC
Van Norren D., Vos J.J. Light damage to the retina: An historical approach. Eye. 2016;30:169–172. doi: 10.1038/eye.2015.218. PubMed DOI PMC
Daiger S.P., Sullivan L.S., Bowne S.J. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 2013;84:132–141. doi: 10.1111/cge.12203. PubMed DOI PMC
Voigt A.P., Binkley E., Flamme-Wiese M.J., Zeng S., DeLuca A.P., Scheetz T.E., Tucker B.A., Mullins R.F., Stone E.M. Single-Cell RNA Sequencing in Human Retinal Degeneration Reveals Distinct Glial Cell Populations. Cells. 2020;9:438. doi: 10.3390/cells9020438. PubMed DOI PMC
Jo D.H., Yun J.-H., Cho C.S., Kim J.H., Kim J.H., Cho C.-H. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia. 2019;67:321–331. doi: 10.1002/glia.23542. PubMed DOI
Menon M., Mohammadi S., Davila-Velderrain J., Goods B.A., Cadwell T.D., Xing Y., Stemmer-Rachamimov A., Shalek A.K., Love J.C., Kellis M., et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-12780-8. PubMed DOI PMC
Jovanovic J., Liu X., Kokona D., Zinkernagel M.S., Ebneter A. Inhibition of inflammatory cells delays retinal degeneration in experimental retinal vein occlusion in mice. Glia. 2019;68:574–588. doi: 10.1002/glia.23739. PubMed DOI PMC
Jones M.K., Lu B., Girman S., Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog. Retin. Eye Res. 2017;58:1–27. doi: 10.1016/j.preteyeres.2017.01.004. PubMed DOI PMC
Garcia J.M., Mendonça L., Brant R., Abud M., Regatieri C., Diniz B. Stem cell therapy for retinal diseases. World J. Stem Cells. 2015;7:160–164. doi: 10.4252/wjsc.v7.i1.160. PubMed DOI PMC
Alonso-Alonso M.L., Srivastava G.K. Current focus of stem cell application in retinal repair. World J. Stem Cells. 2015;7:641–648. doi: 10.4252/wjsc.v7.i3.641. PubMed DOI PMC
Chen M., Xiang Z., Cai J. The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res. 2013;1532:63–75. doi: 10.1016/j.brainres.2013.07.037. PubMed DOI
Mesentier-Louro L.A., Zaverucha-Do-Valle C., Da Silva-Junior A.J., Nascimento-Dos-Santos G., Gubert F., De Figueirêdo A.B.P., Torres A.L., Paredes B.D., Teixeira C., Tovar-Moll F., et al. Distribution of Mesenchymal Stem Cells and Effects on Neuronal Survival and Axon Regeneration after Optic Nerve Crush and Cell Therapy. PLoS ONE. 2014;9:e110722. doi: 10.1371/journal.pone.0110722. PubMed DOI PMC
Duan P., Xu H., Zeng Y., Wang Y., Yin Z.Q. Human Bone Marrow Stromal Cells can Differentiate to a Retinal Pigment Epithelial Phenotype when Co-Cultured with Pig Retinal Pigment Epithelium using a Transwell System. Cell. Physiol. Biochem. 2013;31:601–613. doi: 10.1159/000350080. PubMed DOI
Rezanejad H., Soheili Z.-S., Haddad F., Matin M.M., Samiei S., Manafi A., Ahmadieh H. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene. Cell Tissue Res. 2014;356:65–75. doi: 10.1007/s00441-014-1795-y. PubMed DOI
Hermankova B., Kossl J., Javorkova E., Bohacova P., Hajkova M., Zajicova A., Krulova M., Holan V. The Identification of Interferon-γ as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells. Stem Cells Dev. 2017;26:1399–1408. doi: 10.1089/scd.2017.0111. PubMed DOI
Le Blanc K., Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J. Intern. Med. 2007;262:509–525. doi: 10.1111/j.1365-2796.2007.01844.x. PubMed DOI
Abumaree M., Al Jumah M., Pace R.A., Kalionis B. Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2011;8:375–392. doi: 10.1007/s12015-011-9312-0. PubMed DOI
Reinshagen H., Sorg R.V., Boehringer D., Eberwein P., Sundmacher R., Reinhard T., Auw-Haedrich C., Schwartzkopff J. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. 2009;89:741–748. doi: 10.1111/j.1755-3768.2009.01812.x. PubMed DOI
Holan V., Javorkova E. Mesenchymal Stem Cells, Nanofiber Scaffolds and Ocular Surface Reconstruction. Stem Cell Rev. Rep. 2013;9:609–619. doi: 10.1007/s12015-013-9449-0. PubMed DOI
Čejková J., Trosan P., Čejka Č., Lencova A., Zajicova A., Javorkova E., Kubinová Š., Syková E., Holan V. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp. Eye Res. 2013;116:312–323. doi: 10.1016/j.exer.2013.10.002. PubMed DOI
Holan V., Trosan P., Cejka C., Javorkova E., Zajicova A., Hermankova B., Chudickova M., Cejkova J. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl. Med. 2015;4:1052–1063. doi: 10.5966/sctm.2015-0039. PubMed DOI PMC
Sahu A., Foulsham W., Amouzegar A., Mittal S.K., Chauhan S.K. The therapeutic application of mesenchymal stem cells at the ocular surface. Ocul. Surf. 2019;17:198–207. doi: 10.1016/j.jtos.2019.01.006. PubMed DOI PMC
Wang Y., Han Z.-B., Ma J., Zuo C., Geng J., Gong W., Sun Y., Li H., Wang B., Zhang L., et al. A Toxicity Study of Multiple-Administration Human Umbilical Cord Mesenchymal Stem Cells in Cynomolgus Monkeys. Stem Cells Dev. 2012;21:1401–1408. doi: 10.1089/scd.2011.0441. PubMed DOI
Lalu M.M., McIntyre L., Pugliese C., Fergusson D., Winston B.W., Marshall J.C., Granton J., Stewart D.J. Canadian Critical Care Trials Group. Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE. 2012;7:e47559. doi: 10.1371/journal.pone.0047559. PubMed DOI PMC
Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. PubMed DOI
Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. PubMed DOI
Phinney D.G., Prockop D.J. Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair-Current Views. Stem Cells. 2007;25:2896–2902. doi: 10.1634/stemcells.2007-0637. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Musina R.A., Bekchanova E.S., Sukhikh G.T. Comparison of Mesenchymal Stem Cells Obtained from Different Human Tissues. Bull. Exp. Biol. Med. 2005;139:504–509. doi: 10.1007/s10517-005-0331-1. PubMed DOI
Strioga M., Viswanathan S., Darinskas A., Slaby O., Michalek J. Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells Dev. 2012;21:2724–2752. doi: 10.1089/scd.2011.0722. PubMed DOI
Isobe Y., Koyama N., Nakao K., Osawa K., Ikeno M., Yamanaka S., Okubo Y., Fujimura K., Bessho K. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int. J. Oral Maxillofac. Surg. 2016;45:124–131. doi: 10.1016/j.ijom.2015.06.022. PubMed DOI
Rasmusson I., Ringdén O., Sundberg B., Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp. Cell Res. 2005;305:33–41. doi: 10.1016/j.yexcr.2004.12.013. PubMed DOI
Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. doi: 10.1182/blood.V99.10.3838. PubMed DOI
Bartholomew A., Sturgeon C., Siatskas M., Ferrer K., McIntosh K., Patil S., Hardy W., Devine S., Ucker D., Deans R., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002;30:42–48. doi: 10.1016/S0301-472X(01)00769-X. PubMed DOI
Xu G., Zhang L., Ren G., Yuan Z., Zhang Y., Zhao R.C., Shi Y. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res. 2007;17:240–248. doi: 10.1038/cr.2007.4. PubMed DOI
Jia Z., Jiao C., Zhao S., Li X., Ren X., Zhang L., Han Z.C., Zhang X. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp. Eye Res. 2012;102:44–49. doi: 10.1016/j.exer.2012.06.008. PubMed DOI
Oh J.Y., Lee R.H., Yu J.M., Ko J.H., Lee H.J., Ko A.Y., Roddy G.W., Prockop D.J. Intravenous Mesenchymal Stem Cells Prevented Rejection of Allogeneic Corneal Transplants by Aborting the Early Inflammatory Response. Mol. Ther. 2012;20:2143–2152. doi: 10.1038/mt.2012.165. PubMed DOI PMC
Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M., Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–1441. doi: 10.1016/S0140-6736(04)16104-7. PubMed DOI
Lazarus H.M., Koc O.N., Devine S.M., Curtin P., Maziarz R.T., Holland H.K., Shpall E.J., McCarthy P., Atkinson K., Cooper B.W., et al. Cotransplantation of HLA-Identical Sibling Culture-Expanded Mesenchymal Stem Cells and Hematopoietic Stem Cells in Hematologic Malignancy Patients. Biol. Blood Marrow Transplant. 2005;11:389–398. doi: 10.1016/j.bbmt.2005.02.001. PubMed DOI
Luo C.-J., Zhang F.-J., Zhang L., Geng Y.-Q., Li Q.-G., Hong Q., Fu B., Zhu F., Cui S.-Y., Feng Z., et al. Mesenchymal Stem Cells Ameliorate Sepsis-associated Acute Kidney Injury in Mice. Shock. 2014;41:123–129. doi: 10.1097/SHK.0000000000000080. PubMed DOI
Zappia E., Casazza S., Pedemonte E., Benvenuto F., Bonanni I., Gerdoni E., Giunti D., Ceravolo A., Cazzanti F., Frassoni F., et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755–1761. doi: 10.1182/blood-2005-04-1496. PubMed DOI
Augello A., Tasso R., Negrini S.M., Cancedda R., Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56:1175–1186. doi: 10.1002/art.22511. PubMed DOI
English K., Ryan J.M., Tobin L.M., Murphy M.J., Barry F.P., Mahon B.P. Cell contact, prostaglandin E2and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25Highforkhead box P3+regulatory T cells. Clin. Exp. Immunol. 2009;156:149–160. doi: 10.1111/j.1365-2249.2009.03874.x. PubMed DOI PMC
Meisel R., Zibert A., Laryea M., Göbel U., Däubener W., Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood. 2004;103:4619–4621. doi: 10.1182/blood-2003-11-3909. PubMed DOI
Akiyama K., Chen C., Wang D., Xu X., Qu C., Yamaza T., Cai T., Chen W., Sun L., Shi S. Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis. Cell Stem Cell. 2012;10:544–555. doi: 10.1016/j.stem.2012.03.007. PubMed DOI PMC
Ghannam S., Pène J., Torcy-Moquet G., Jorgensen C., Yssel H. Mesenchymal Stem Cells Inhibit Human Th17 Cell Differentiation and Function and Induce a T Regulatory Cell Phenotype. J. Immunol. 2010;185:302–312. doi: 10.4049/jimmunol.0902007. PubMed DOI
Svobodova E., Krulova M., Zajicova A., Pokorna K., Prochazkova J., Trosan P., Holan V. The Role of Mouse Mesenchymal Stem Cells in Differentiation of Naive T-Cells into Anti-Inflammatory Regulatory T-Cell or Proinflammatory Helper T-Cell 17 Population. Stem Cells Dev. 2012;21:901–910. doi: 10.1089/scd.2011.0157. PubMed DOI PMC
Holan V., Hermankova B., Bohacova P., Kossl J., Chudickova M., Hajkova M., Krulova M., Zajicova A., Javorkova E. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Rev. Rep. 2016;12:654–663. doi: 10.1007/s12015-016-9688-y. PubMed DOI
Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. Mesenchymal Stem Cells Are Recruited into Wounded Skin and Contribute to Wound Repair by Transdifferentiation into Multiple Skin Cell Type. J. Immunol. 2008;180:2581–2587. doi: 10.4049/jimmunol.180.4.2581. PubMed DOI
Lan Y., Kodati S., Lee H.S., Omoto M., Jin Y., Chauhan S.K. Kinetics and Function of Mesenchymal Stem Cells in Corneal Injury. Investig. Opthalmol. Vis. Sci. 2012;53:3638–3644. doi: 10.1167/iovs.11-9311. PubMed DOI
Assis A.C.M., Carvalho J.L., Jacoby B.A., Ferreira R.L.B., Castanheira P., Diniz S.O.F., Cardoso V.N., Goes A.M., Ferreira A.J. Time-Dependent Migration of Systemically Delivered Bone Marrow Mesenchymal Stem Cells to the Infarcted Heart. Cell Transplant. 2010;19:219–230. doi: 10.3727/096368909X479677. PubMed DOI
Javorkova E., Trosan P., Zajicova A., Krulová M., Hajkova M., Holan V. Modulation of the Early Inflammatory Microenvironment in the Alkali-Burned Eye by Systemically Administered Interferon-γ-Treated Mesenchymal Stromal Cells. Stem Cells Dev. 2014;23:2490–2500. doi: 10.1089/scd.2013.0568. PubMed DOI PMC
Holan V., Echalar B., Palacka K., Kossl J., Bohacova P., Krulova M., Brejchova J., Svoboda P., Zajicova A. The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients. Stem Cell Rev. Rep. 2021 doi: 10.1007/s12015-021-10126-w. PubMed DOI
Ponte A.L., Marais E., Gallay N., Langonné A., Delorme B., Hérault O., Charbord P., Domenech J. The In Vitro Migration Capacity of Human Bone Marrow Mesenchymal Stem Cells: Comparison of Chemokine and Growth Factor Chemotactic Activities. Stem Cells. 2007;25:1737–1745. doi: 10.1634/stemcells.2007-0054. PubMed DOI
Li L., Jiang J. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front. Med. 2011;5:33–39. doi: 10.1007/s11684-011-0114-1. PubMed DOI
Hermankova B., Kossl J., Bohacova P., Javorkova E., Hajkova M., Krulova M., Zajicova A., Holan V. The Immunomodulatory Potential of Mesenchymal Stem Cells in a Retinal Inflammatory Environment. Stem Cell Rev. Rep. 2019;15:880–891. doi: 10.1007/s12015-019-09908-0. PubMed DOI
Grunnet L.G., Aikin R., Tonnesen M.F., Paraskevas S., Blaabjerg L., Storling J., Rosenberg L., Billestrup N., Maysinger D., Mandrup-Poulsen T. Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in -Cells. Diabetes. 2009;58:1807–1815. doi: 10.2337/db08-0178. PubMed DOI PMC
Yang L., Zhang S., Duan H., Dong M., Hu X., Zhang Z., Wang Y., Zhang X., Shi W., Zhou Q. Different Effects of Pro-Inflammatory Factors and Hyperosmotic Stress on Corneal Epithelial Stem/Progenitor Cells and Wound Healing in Mice. Stem Cells Transl. Med. 2019;8:46–57. doi: 10.1002/sctm.18-0005. PubMed DOI PMC
Woodward A.M., Di Zazzo A., Bonini S., Argüeso P. Endoplasmic reticulum stress promotes inflammation-mediated proteolytic activity at the ocular surface. Sci. Rep. 2020;10:1–9. doi: 10.1038/s41598-020-59237-3. PubMed DOI PMC
Khubutiya M.S., Vagabov A.V., Temnov A.A., Sklifas A.N. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 2014;16:579–585. doi: 10.1016/j.jcyt.2013.07.017. PubMed DOI
Kossl J., Bohacova P., Hermankova B., Javorkova E., Zajicova A., Holan V. Anti-Apoptotic Properties of Mesenchymal Stem Cells in a Mouse Model of Corneal Inflammation. Stem Cells Dev. 2021 doi: 10.1089/scd.2020.0195. PubMed DOI
García R., Aguiar J., Alberti E., De La Cuétara K., Pavón N. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem. Biophys. Res. Commun. 2004;316:753–754. doi: 10.1016/j.bbrc.2004.02.111. PubMed DOI
Zhang Y., Wang W. Effects of Bone Marrow Mesenchymal Stem Cell Transplantation on Light-Damaged Retina. Investig. Opthalmol. Vis. Sci. 2010;51:3742–3748. doi: 10.1167/iovs.08-3314. PubMed DOI
Zwart I., Hill A.J., Al-Allaf F., Shah M., Girdlestone J., Sanusi A.B., Mehmet H., Navarrete R., Navarrete C., Jen L.-S. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp. Neurol. 2009;216:439–448. doi: 10.1016/j.expneurol.2008.12.028. PubMed DOI
Meirelles L.D.S., Fontes A.M., Covas D.T., Caplan A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–427. doi: 10.1016/j.cytogfr.2009.10.002. PubMed DOI
Xu W., Wang X., Xu G., Guo J. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro. Arq. Bras. Oftalmol. 2013;76:105–110. doi: 10.1590/S0004-27492013000200010. PubMed DOI
Inoue Y., Iriyama A., Ueno S., Takahashi H., Kondo M., Tamaki Y., Araie M., Yanagi Y. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp. Eye Res. 2007;85:234–241. doi: 10.1016/j.exer.2007.04.007. PubMed DOI
Notara M., Hernandez D., Mason C., Daniels J.T. Characterization of the phenotype and functionality of corneal epithelial cells derived from mouse embryonic stem cells. Regen. Med. 2012;7:167–178. doi: 10.2217/rme.11.117. PubMed DOI
Gu S., Xing C., Han J., Tso M.O., Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol. Vis. 2009;15:99–107. PubMed PMC
Jiang T.-S., Cai L., Ji W.-Y., Hui Y.-N., Wang Y.-S., Hu D., Zhu J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol. Vis. 2010;16:1304–1316. PubMed PMC
Trosan P., Svobodova E., Chudickova M., Krulova M., Zajicova A., Holan V. The Key Role of Insulin-Like Growth Factor I in Limbal Stem Cell Differentiation and the Corneal Wound-Healing Process. Stem Cells Dev. 2012;21:3341–3350. doi: 10.1089/scd.2012.0180. PubMed DOI PMC
Tropel P., Platet N., Platel J.-C., Noël D., Albrieux M., Benabid A.-L., Berger F. Functional Neuronal Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells. 2006;24:2868–2876. doi: 10.1634/stemcells.2005-0636. PubMed DOI
Kicic A., Shen W.-Y., Wilson A.S., Constable I.J., Robertson T., Rakoczy P.E. Differentiation of Marrow Stromal Cells into Photoreceptors in the Rat Eye. J. Neurosci. 2003;23:7742–7749. doi: 10.1523/JNEUROSCI.23-21-07742.2003. PubMed DOI PMC
Nadri S., Kazemi B., Eeslaminejad M.B., Yazdani S., Soleimani M., Eslaminejad M.B. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol. Biol. Rep. 2013;40:3883–3890. doi: 10.1007/s11033-012-2360-y. PubMed DOI
Salehi H., Amirpour N., Razavi S., Esfandiari E., Zavar R. Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann. Anat. Anat. Anz. 2017;210:52–63. doi: 10.1016/j.aanat.2016.11.010. PubMed DOI
Castanheira P., Torquetti L., Nehemy M.B., Goes A.M. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats. Arq. Bras. Oftalmol. 2008;71:644–650. doi: 10.1590/S0004-27492008000500007. PubMed DOI
Huo D.-M., Dong F.-T., Yu W.-H., Gao F. Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa. Int. J. Ophthalmol. 2010;3:216–219. PubMed PMC
Huang C., Zhang J., Ao M., Li Y., Zhang C., Xu Y., Li X., Wang W. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype. J. Cell. Biochem. 2011;113:590–598. doi: 10.1002/jcb.23383. PubMed DOI
Mathivanan I., Trepp C.M., Brunold C., Baerlocher G.M., Enzmann V. Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Exp. Cell Res. 2015;333:11–20. doi: 10.1016/j.yexcr.2015.02.001. PubMed DOI
Croitoru-Lamoury J., Lamoury F.M.J., Caristo M., Suzuki K., Walker D., Takikawa O., Taylor R., Brew B.J. Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO) PLoS ONE. 2011;6:e14698. doi: 10.1371/journal.pone.0014698. PubMed DOI PMC
Wong G., Goldshmit Y., Turnley A.M. Interferon-γ but not TNFα promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp. Neurol. 2004;187:171–177. doi: 10.1016/j.expneurol.2004.01.009. PubMed DOI
Liang X., Ding Y., Zhang Y., Tse H.F., Lian Q. Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplant. 2014;23:1045–1059. doi: 10.3727/096368913X667709. PubMed DOI
Adak S., Magdalene D., Deshmukh S., Das D., Jaganathan B.G. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev. Rep. 2021:1–20. doi: 10.1007/s12015-020-10090-x. PubMed DOI PMC
Yu B., Shao H., Su C., Jiang Y., Chen X., Bai L., Zhang Y., Li Q., Zhang X., Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci. Rep. 2016;6:srep34562. doi: 10.1038/srep34562. PubMed DOI PMC
Mead B., Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl. Med. 2017;6:1273–1285. doi: 10.1002/sctm.16-0428. PubMed DOI PMC
Islam M.N., Das S.R., Emin M.T., Wei M., Sun L., Westphalen K., Rowlands D.J., Quadri S.K., Bhattacharya S., Bhattacharya J. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012;18:759–765. doi: 10.1038/nm.2736. PubMed DOI PMC
Paliwal S., Chaudhuri R., Agrawal A., Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 2018;25:1–12. doi: 10.1186/s12929-018-0429-1. PubMed DOI PMC
Eells J.T. Mitochondrial Dysfunction in the Aging Retina. Biology. 2019;8:31. doi: 10.3390/biology8020031. PubMed DOI PMC
Freeman B.T., Kouris N.A., Ogle B.M. Tracking Fusion of Human Mesenchymal Stem Cells After Transplantation to the Heart. Stem Cells Transl. Med. 2015;4:685–694. doi: 10.5966/sctm.2014-0198. PubMed DOI PMC
Azizi Z., Lange C., Paroni F., Ardestani A., Meyer A., Wu Y., Zander A.R., Westenfelder C., Maedler K. β-MSCs: Successful fusion of MSCs with β-cells results in a β-cell like phenotype. Oncotarget. 2016;7:48963–48977. doi: 10.18632/oncotarget.10214. PubMed DOI PMC
Yang Z., Li K., Yan X., Dong F., Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010;248:1415–1422. doi: 10.1007/s00417-010-1384-z. PubMed DOI
Mendel T.A., Clabough E.B.D., Kao D.S., Demidova-Rice T.N., Durham J.T., Zotter B.C., Seaman S.A., Cronk S.M., Rakoczy E.P., Katz A.J., et al. Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy. PLoS ONE. 2013;8:e65691. doi: 10.1371/annotation/679017bf-abd5-44ce-9e20-5e7af1cd3468. PubMed DOI PMC
Rajashekhar G., Ramadan A., Abburi C., Callaghan B., Traktuev D.O., Evans-Molina C., Maturi R., Harris A., Kern T.S., March K.L. Regenerative Therapeutic Potential of Adipose Stromal Cells in Early Stage Diabetic Retinopathy. PLoS ONE. 2014;9:e84671. doi: 10.1371/journal.pone.0084671. PubMed DOI PMC
Ezquer F., Ezquer M., Conget P., Arango-Rodriguez M. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol. 2013;92:e86–e95. doi: 10.1111/aos.12113. PubMed DOI
Mead B., Berry M., Logan A., Scott R.A., Leadbeater W., Scheven B.A. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14:243–257. doi: 10.1016/j.scr.2015.02.003. PubMed DOI PMC
Holan V., Hermankova B., Kossl J. Perspectives of Stem Cell–Based Therapy for Age-Related Retinal Degenerative Diseases. Cell Transplant. 2017;26:1538–1541. doi: 10.1177/0963689717721227. PubMed DOI PMC
Holan V., Hermankova B., Krulova M., Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cell-a clue to stem cell-based therapy. World J. Stem Cells. 2019;11:957–967. doi: 10.4252/wjsc.v11.i11.957. PubMed DOI PMC
Park S.S., Moisseiev E., Bauer G., Anderson J.D., Grant M.B., Zam A., Zawadzki R.J., Werner J.S., Nolta J.A. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog. Retin. Eye Res. 2017;56:148–165. doi: 10.1016/j.preteyeres.2016.10.002. PubMed DOI PMC
Ng T.K., Fortino V.R., Pelaez D., Cheung H.S. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J. Stem Cells. 2014;6:111–119. doi: 10.4252/wjsc.v6.i2.111. PubMed DOI PMC
Labrador-Velandia S., Alonso-Alonso M.L., Alvarez-Sanchez S., González-Zamora J., Carretero-Barrio I., Pastor J.C., Fernandez-Bueno I., Srivastava G.K. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials. World J. Stem Cells. 2016;8:376–383. doi: 10.4252/wjsc.v8.i11.376. PubMed DOI PMC
Zhang X.-Y., Ng T.K., Brelén M.E., Wu D., Wang J.X., Chan K.P., Yung J.S.Y., Cao D., Wang Y., Zhang S., et al. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction. Sci. Rep. 2016;6 doi: 10.1038/srep37279. PubMed DOI PMC
Chowers G., Cohen M., Marks-Ohana D., Stika S., Eijzenberg A., Banin E., Obolensky A. Course of Sodium Iodate–Induced Retinal Degeneration in Albino and Pigmented Mice. Investig. Opthalmol. Vis. Sci. 2017;58:2239–2249. doi: 10.1167/iovs.16-21255. PubMed DOI
Tao Y., Chen T., Fang W., Peng G., Wang L., Qin L., Liu B., Huang Y.F. The temporal topography of the N-Methyl- N-nitrosourea induced photoreceptor degeneration in mouse retina. Sci. Rep. 2015;5 doi: 10.1038/srep18612. PubMed DOI PMC
Pirmardan E.R., Soheili Z.-S., Samiei S., Ahmadieh H., Mowla S.J., Naseri M., Daftarian N. In Vivo Evaluation of PAX6 Overexpression and NMDA Cytotoxicity to Stimulate Proliferation in the Mouse Retina. Sci. Rep. 2018;8:17700. doi: 10.1038/s41598-018-35884-5. PubMed DOI PMC
Jin Z.-B., Gao M.-L., Deng W.-L., Wu K.-C., Sugita S., Mandai M., Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog. Retin. Eye Res. 2019;69:38–56. doi: 10.1016/j.preteyeres.2018.11.003. PubMed DOI
Ludwig P.E., Freeman S.C., Janot A.C. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int. J. Retin. Vitr. 2019;5:1–14. doi: 10.1186/s40942-019-0158-y. PubMed DOI PMC
Nuzzi R., Tridico F. Perspectives of Autologous Mesenchymal Stem-Cell Transplantation in Macular Hole Surgery: A Review of Current Findings. J. Ophthalmol. 2019;2019:1–8. doi: 10.1155/2019/3162478. PubMed DOI PMC
Wagner W., Ho A.D., Zenke M. Different Facets of Aging in Human Mesenchymal Stem Cells. Tissue Eng. Part B Rev. 2010;16:445–453. doi: 10.1089/ten.teb.2009.0825. PubMed DOI
Rombouts W.J.C., Ploemacher E.R. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17:160–170. doi: 10.1038/sj.leu.2402763. PubMed DOI
Eggenhofer E., Benseler V., Kroemer H., Popp F., Geissler E., Schlitt H., Baan C., Dahlke M., Hoogduijn M.J. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front. Immunol. 2012;3:297. doi: 10.3389/fimmu.2012.00297. PubMed DOI PMC
Huang H., Kolibabka M., Eshwaran R., Chatterjee A., Schlotterer A., Willer H., Bieback K., Hammes H.-P., Feng Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J. 2019;33:14668–14679. doi: 10.1096/fj.201901500R. PubMed DOI
Oner A., Gonen Z.B., Sinim N., Cetin M., Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: A phase I clinical safety study. Stem Cell Res. Ther. 2016;7 doi: 10.1186/s13287-016-0432-y. PubMed DOI PMC
Kahraman N.S. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: A 6-month follow-up results of a phase 3 trial. Int. J. Ophthalmol. 2020;13:1423–1429. doi: 10.18240/ijo.2020.09.14. PubMed DOI PMC
Oumlzmert E., Arslan U. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: Prospective analysis of 1-year results. Stem Cell Res. Ther. 2020;11:353. doi: 10.1186/s13287-020-01870-w. PubMed DOI PMC
Niwa M., Aoki H., Hirata A., Tomita H., Green P.G., Hara A. Retinal Cell Degeneration in Animal Models. Int. J. Mol. Sci. 2016;17:110. doi: 10.3390/ijms17010110. PubMed DOI PMC
Hanus J., Anderson C., Sarraf D., Ma J., Wang S. Retinal pigment epithelial cell necroptosis in response to sodium iodate. Cell Death Discov. 2016;2:16054. doi: 10.1038/cddiscovery.2016.54. PubMed DOI PMC
Mao X., Pan T., Shen H., Xi H., Yuan S., Liu Q. The rescue effect of mesenchymal stem cell on sodium iodate-induced retinal pigment epithelial cell death through deactivation of NF-κB-mediated NLRP3 inflammasome. Biomed. Pharmacother. 2018;103:517–523. doi: 10.1016/j.biopha.2018.04.038. PubMed DOI
Moriguchi M., Nakamura S., Inoue Y., Nishinaka A., Nakamura M., Shimazawa M., Hara H. Irreversible Photoreceptors and RPE Cells Damage by Intravenous Sodium Iodate in Mice Is Related to Macrophage Accumulation. Investig. Opthalmol. Vis. Sci. 2018;59:3476–3487. doi: 10.1167/iovs.17-23532. PubMed DOI
Liu Y., Li Y., Wang C., Zhang Y., Su G. Morphologic and histopathologic change of sodium iodate-induced retinal degeneration in adult rats. Int. J. Clin. Exp. Pathol. 2019;12:443–454. PubMed PMC
Bhutto I.A., Ogura S., Baldeosingh R., McLeod D.S., Lutty G.A., Edwards M.M. An Acute Injury Model for the Phenotypic Characteristics of Geographic Atrophy. Investig. Opthalmol. Vis. Sci. 2018;59:AMD143–AMD151. doi: 10.1167/iovs.18-24245. PubMed DOI PMC
Ahn S.M., Ahn J., Cha S., Yun C., Park T.K., Kim Y.-J., Goo Y.S., Kim S.-W. The effects of intravitreal sodium iodate injection on retinal degeneration following vitrectomy in rabbits. Sci. Rep. 2019;9:15696–15710. doi: 10.1038/s41598-019-52172-y. PubMed DOI PMC
Barzelay A., Algor S.W., Niztan A., Katz S., Benhamou M., Nakdimon I., Azmon N., Gozlan S., Mezad-Koursh D., Neudorfer M., et al. Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress. Stem Cells Int. 2018;2018:1–11. doi: 10.1155/2018/9682856. PubMed DOI PMC
Gong L., Wu Q., Song B., Lu B., Zhang Y. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin. Exp. Ophthalmol. 2008;36:666–671. doi: 10.1111/j.1442-9071.2008.01857.x. PubMed DOI
Fiori A., Terlizzi V., Kremer H., Gebauer J., Hammes H.-P., Harmsen M.C., Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology. 2018;223:729–743. doi: 10.1016/j.imbio.2018.01.001. PubMed DOI
Ezquer M., Urzua C.A., Montecino S., Leal K., Conget P., Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res. Ther. 2016;7:42. doi: 10.1186/s13287-016-0299-y. PubMed DOI PMC
Zhang W., Wang Y., Kong J., Dong M., Duan H., Chen S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-00298-2. PubMed DOI PMC
Kong J.-H., Zheng D., Chen S., Duan H.-T., Wang Y.-X., Dong M., Song J. A comparative study on the transplantation of different concentrations of human umbilical mesenchymal cells into diabetic rats. Int. J. Ophthalmol. 2015;8:257–262. PubMed PMC
Cronk S.M., Kelly-Goss M.R., Ray H.C., Mendel T.A., Hoehn K.L., Bruce A.C., Dey B.K., Guendel A.M., Tavakol D.N., Herman I.M., et al. Adipose-Derived Stem Cells From Diabetic Mice Show Impaired Vascular Stabilization in a Murine Model of Diabetic Retinopathy. Stem Cells Transl. Med. 2015;4:459–467. doi: 10.5966/sctm.2014-0108. PubMed DOI PMC
Nagaishi K., Mizue Y., Chikenji T., Otani M., Nakano M., Saijo Y., Tsuchida H., Ishioka S., Nishikawa A., Saito T., et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci. Rep. 2017;7:1–17. doi: 10.1038/s41598-017-08921-y. PubMed DOI PMC
Robinson R., Barathi V.A., Chaurasia S.S., Wong T.Y., Kern T.S. Update on animal models of diabetic retinopathy: From molecular approaches to mice and higher mammals. Dis. Model. Mech. 2012;5:444–456. doi: 10.1242/dmm.009597. PubMed DOI PMC
Lai A.K.W., Lo A.C.Y. Animal Models of Diabetic Retinopathy: Summary and Comparison. J. Diabetes Res. 2013;2013:1–29. doi: 10.1155/2013/106594. PubMed DOI PMC
Araújo R.S., Silva M.S., Santos D.F., Silva G.A. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2Akita mouse. Exp. Eye Res. 2020;194 doi: 10.1016/j.exer.2020.108027. PubMed DOI
Elshaer S.L., Evans W., Pentecost M., Lenin R., Periasamy R., Jha K.A., Alli S., Gentry J., Thomas S.M., Sohl N., et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res. Ther. 2018;9:1–18. doi: 10.1186/s13287-018-1059-y. PubMed DOI PMC
Van Hove I., De Groef L., Boeckx B., Modave E., Hu T.-T., Beets K., Etienne I., Van Bergen T., Lambrechts D., Moons L., et al. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Diabetologia. 2020;63:2235–2248. doi: 10.1007/s00125-020-05218-0. PubMed DOI
Chaurasia S.S., Lim R.R., Parikh B.H., Wey Y.S., Tun B.B., Wong T.Y., Luu C.D., Agrawal R., Ghosh A., Mortellaro A., et al. The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-21198-z. PubMed DOI PMC
Rivas M.A., Vecino E. Animal models and different therapies for treatment of retinitis pigmentosa. Histol. Histopathol. 2009;24:1295–1322. doi: 10.14670/HH-24.1295. PubMed DOI
He Y., Zhang Y., Liu X., Ghazaryan E., Li Y., Xie J., Su G. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. Int. J. Mol. Sci. 2014;15:14456–14474. doi: 10.3390/ijms150814456. PubMed DOI PMC
Tsubura A., Yoshizawa K., Kuwata M., Uehara N. Animal models for retinitis pigmentosa induced by MNU, disease pro-gression, mechanisms and therapeutic trials. Histol. Histopathol. 2010;25:933–944. doi: 10.14670/HH-25.933. PubMed DOI
Zhou T., Huang Z., Sun X., Zhu X., Zhou L., Li M., Cheng B., Liu X., He C. Microglia Polarization with M1/M2 Phenotype Changes in rd1 Mouse Model of Retinal Degeneration. Front. Neuroanat. 2017;11:77. doi: 10.3389/fnana.2017.00077. PubMed DOI PMC
Gargini C., Terzibasi E., Mazzoni F., Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: A morphological and ERG study. J. Comp. Neurol. 2006;500:222–238. doi: 10.1002/cne.21144. PubMed DOI PMC
Zhao L., Zabel M.K., Wang X., Ma W., Shah P., Fariss R.N., Qian H., Parkhurst C.N., Gan W., Wong W.T. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 2015;7:1179–1197. doi: 10.15252/emmm.201505298. PubMed DOI PMC
Kameya S., Hawes N.L., Chang B., Heckenlively J.R., Naggert J.K., Nishina P.M. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum. Mol. Genet. 2002;11:1879–1886. doi: 10.1093/hmg/11.16.1879. PubMed DOI
D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., Lavail M.M., Vollrath D. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 2000;9:645–651. doi: 10.1093/hmg/9.4.645. PubMed DOI
Di Pierdomenico J., García-Ayuso D., Pinilla I., Cuenca N., Vidal-Sanz M., Agudo-Barriuso M., Villegas-Pérez M.P. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities. Front. Neuroanat. 2017;11:14. doi: 10.3389/fnana.2017.00014. PubMed DOI PMC
Otani A., Dorrell M.I., Kinder K., Moreno S.K., Nusinowitz S., Banin E., Heckenlively J., Friedlander M. Rescue of retinal degen-eration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J. Clin. Investig. 2004;114:765–774. doi: 10.1172/JCI200421686. PubMed DOI PMC
Lejkowska R., Kawa M.P., Pius-Sadowska E., Rogińska D., Łuczkowska K., Machaliński B., Machalińska A. Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. Int. J. Mol. Sci. 2019;20:777. doi: 10.3390/ijms20030777. PubMed DOI PMC
Qu L., Gao L., Xu H., Duan P., Zeng Y., Liu Y., Yin Z.Q. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-00241-5. PubMed DOI PMC
Deng C.-L., Hu C.-B., Wang B.-Y., Xiong Y.-C., Chen T., Zhao N., Bao L.-H., Quan R., Du F.-Y., Sui B.-D., et al. Bone progeria diminished the therapeutic effects of bone marrow mesenchymal stem cells on retinal degeneration. Biochem. Biophys. Res. Commun. 2020;531:180–186. doi: 10.1016/j.bbrc.2020.07.007. PubMed DOI
Johnson T.V., Tomarev S.I. Rodent models of glaucoma. Brain Res. Bull. 2010;81:349–358. doi: 10.1016/j.brainresbull.2009.04.004. PubMed DOI PMC
Harada C., Kimura A., Guo X., Namekata K., Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br. J. Ophthalmol. 2018;103:161–166. doi: 10.1136/bjophthalmol-2018-312724. PubMed DOI PMC
Overby D.R., Clark A.F. Animal models of glucocorticoid-induced glaucoma. Exp. Eye Res. 2015;141:15–22. doi: 10.1016/j.exer.2015.06.002. PubMed DOI PMC
Biswas S., Wan K.H. Review of rodent hypertensive glaucoma models. Acta Ophthalmol. 2019;97:e331–e340. doi: 10.1111/aos.13983. PubMed DOI
Bai Y., Zhu Y., Chen Q., Xu J., Sarunic M.V., Saragovi U.H., Zhuo Y. Validation of glaucoma-like features in the rat episcleral vein cauterization model. Chin. Med. J. 2014;127:359–364. PubMed
Huang W., Hu F., Wang M., Gao F., Xu P., Xing C., Sun X., Zhang S., Wu J. Comparative analysis of retinal ganglion cell damage in three glaucomatous rat models. Exp. Eye Res. 2018;172:112–122. doi: 10.1016/j.exer.2018.03.019. PubMed DOI
Mead B., Hill L.J., Blanch R.J., Ward K., Logan A., Berry M., Leadbeater W., Scheven B.A. Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy. 2016;18:487–496. doi: 10.1016/j.jcyt.2015.12.002. PubMed DOI
Johnson T.V., Bull N.D., Hunt D.P., Marina N., Tomarev S.I., Martin K.R. Neuroprotective Effects of Intravitreal Mesenchymal Stem Cell Transplantation in Experimental Glaucoma. Investig. Opthalmol. Vis. Sci. 2010;51:2051–2059. doi: 10.1167/iovs.09-4509. PubMed DOI PMC
Manuguerra-Gagné R., Boulos P.R., Ammar A., Leblond F.A., Krosl G., Pichette V., Lesk M.R., Roy D.-C. Transplantation of Mesenchymal Stem Cells Promotes Tissue Regeneration in a Glaucoma Model Through Laser-Induced Paracrine Factor Secretion and Progenitor Cell Recruitment. Stem Cells. 2013;31:1136–1148. doi: 10.1002/stem.1364. PubMed DOI
Emre E., Yüksel N., Duruksu G., Pirhan D., Subaşi C., Erman G., Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow–derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy. 2015;17:543–559. doi: 10.1016/j.jcyt.2014.12.005. PubMed DOI
Pan D., Chang X., Xu M., Zhang M., Zhang S., Wang Y., Luo X., Xu J., Yang X., Sun X. UMSC-derived exosomes promote retinal ganglion cels survival in a rat model of optic nerve crush. J. Chem. Neuroanat. 2019;96:134–139. doi: 10.1016/j.jchemneu.2019.01.006. PubMed DOI
Çerman E., Akkoc T., Eraslan M., Şahin O., Ozkara S., Aker F.V., Subaşı C., Karaoz E., Akkoç T. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495. doi: 10.1371/journal.pone.0156495. PubMed DOI PMC
Roubeix C., Godefroy D., Mias C., Sapienza A., Riancho L., Degardin J., Fradot V., Ivkovic I., Picaud S., Sennlaub F., et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res. Ther. 2015;6:1–13. doi: 10.1186/s13287-015-0168-0. PubMed DOI PMC
Harper M.M., Grozdanic S.D., Blits B., Kuehn M.H., Zamzow D., Buss J.E., Kardon R.H., Sakaguchi D.S. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes. Investig. Opthalmol. Vis. Sci. 2011;52:4506–4515. doi: 10.1167/iovs.11-7346. PubMed DOI PMC
Park S.S., Bauer G., Abedi M., Pontow S., Panorgias A., Jonnal R.S., Zawadzki R.J., Werner J.S., Nolta A.J. Intravitreal Autologous Bone Marrow CD34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investig. Opthalmol. Vis. Sci. 2014;56:81–89. doi: 10.1167/iovs.14-15415. PubMed DOI PMC
Siqueira R.C., Messias A., Voltarelli J.C., Scott I.U., Jorge R. Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy. Retina. 2011;31:1207–1214. doi: 10.1097/IAE.0b013e3181f9c242. PubMed DOI
Gu X., Yu X., Zhao C., Duan P., Zhao T., Liu Y., Li S., Yang Z., Li Y., Qian C., et al. Efficacy and Safety of Autologous Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with Diabetic Retinopathy. Cell. Physiol. Biochem. 2018;49:40–52. doi: 10.1159/000492838. PubMed DOI
Weiss J.N., Levy S. Stem Cell Ophthalmology Treatment Study: Bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig. 2018;5:18. doi: 10.21037/sci.2018.04.02. PubMed DOI PMC
Levy S., Weiss J.N., Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: A preliminary report. Neural Regen. Res. 2015;10:982–988. doi: 10.4103/1673-5374.158365. PubMed DOI PMC
Weiss J.N., Levy S., Benes S.C. Stem Cell Ophthalmology Treatment Study: Bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION) Stem Cell Investig. 2017;4:94. doi: 10.21037/sci.2017.11.05. PubMed DOI PMC
Hoogduijn M.J., Dor F.J.M.F. Mesenchymal Stem Cells: Are We Ready for Clinical Application in Transplantation and Tissue Regeneration? Front. Immunol. 2013;4:144. doi: 10.3389/fimmu.2013.00144. PubMed DOI PMC
Bhattacharya S., Gangaraju R., Chaum E. Recent Advances in Retinal Stem Cell Therapy. Curr. Mol. Biol. Rep. 2017;3:172–182. doi: 10.1007/s40610-017-0069-3. PubMed DOI PMC
Wang Y., Tang Z., Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: A review of clinical trials. Cell Death Dis. 2020;11:1–14. doi: 10.1038/s41419-020-02955-3. PubMed DOI PMC
Tzameret A., Sher I., Belkin M., Treves A.J., Meir A., Nagler A., Levkovitch-Verbin H., Rotenstreich Y., Solomon A.S. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Res. 2015;15:387–394. doi: 10.1016/j.scr.2015.08.007. PubMed DOI
Ji S., Lin S., Chen J., Huang X., Wei C.-C., Li Z., Tang S. Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Curr. Eye Res. 2018;43:810–820. doi: 10.1080/02713683.2018.1440604. PubMed DOI
Velandia S.L., Di Lauro S., Alonso-Alonso M.L., Bartolomé S.T., Srivastava G.K., Pastor J.C., Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017;256:125–134. doi: 10.1007/s00417-017-3842-3. PubMed DOI
Lohan P., Treacy O., Morcos M., Donohoe E., O’Donoghue Y., Ryan A.E., Elliman S.J., Ritter T., Griffin M.D. Interspecies Incompatibilities Limit the Immunomodulatory Effect of Human Mesenchymal Stromal Cells in the Rat. Stem Cells. 2018;36:1210–1215. doi: 10.1002/stem.2840. PubMed DOI
Oh J.Y., Kim M.K., Shin M.S., Wee W.R., Lee J.H. Cytokine secretion by human mesenchymal stem cells cocultured with damaged corneal epithelial cells. Cytokine. 2009;46:100–103. doi: 10.1016/j.cyto.2008.12.011. PubMed DOI
Zhou L., Lopes J.E., Chong M.M.W., Ivanov I.I., Min R., Victora G.D., Shen Y., Du J., Rubtsov Y.P., Rudensky A.Y., et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nat. Cell Biol. 2008;453:236–240. doi: 10.1038/nature06878. PubMed DOI PMC