Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials

. 2021 Mar 07 ; 10 (3) : . [epub] 20210307

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33799995

Grantová podpora
19-02290S Grantová Agentura České Republiky
SVV 260435 Přírodovědecká Fakulta, Univerzita Karlova
SVV 20604315 Přírodovědecká Fakulta, Univerzita Karlova

Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.

Zobrazit více v PubMed

Shaw P.X., Stiles T., Douglas C., Ho D., Fan W., Du H., Xiao X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol. Sci. 2016;3:196–221. doi: 10.3934/molsci.2016.2.196. PubMed DOI PMC

Semeraro F., Cancarini A., Dell’Omo R., Rezzola S., Romano M.R., Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J. Diabetes Res. 2015;2015:1–16. doi: 10.1155/2015/582060. PubMed DOI PMC

Van Norren D., Vos J.J. Light damage to the retina: An historical approach. Eye. 2016;30:169–172. doi: 10.1038/eye.2015.218. PubMed DOI PMC

Daiger S.P., Sullivan L.S., Bowne S.J. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 2013;84:132–141. doi: 10.1111/cge.12203. PubMed DOI PMC

Voigt A.P., Binkley E., Flamme-Wiese M.J., Zeng S., DeLuca A.P., Scheetz T.E., Tucker B.A., Mullins R.F., Stone E.M. Single-Cell RNA Sequencing in Human Retinal Degeneration Reveals Distinct Glial Cell Populations. Cells. 2020;9:438. doi: 10.3390/cells9020438. PubMed DOI PMC

Jo D.H., Yun J.-H., Cho C.S., Kim J.H., Kim J.H., Cho C.-H. Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia. 2019;67:321–331. doi: 10.1002/glia.23542. PubMed DOI

Menon M., Mohammadi S., Davila-Velderrain J., Goods B.A., Cadwell T.D., Xing Y., Stemmer-Rachamimov A., Shalek A.K., Love J.C., Kellis M., et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-12780-8. PubMed DOI PMC

Jovanovic J., Liu X., Kokona D., Zinkernagel M.S., Ebneter A. Inhibition of inflammatory cells delays retinal degeneration in experimental retinal vein occlusion in mice. Glia. 2019;68:574–588. doi: 10.1002/glia.23739. PubMed DOI PMC

Jones M.K., Lu B., Girman S., Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog. Retin. Eye Res. 2017;58:1–27. doi: 10.1016/j.preteyeres.2017.01.004. PubMed DOI PMC

Garcia J.M., Mendonça L., Brant R., Abud M., Regatieri C., Diniz B. Stem cell therapy for retinal diseases. World J. Stem Cells. 2015;7:160–164. doi: 10.4252/wjsc.v7.i1.160. PubMed DOI PMC

Alonso-Alonso M.L., Srivastava G.K. Current focus of stem cell application in retinal repair. World J. Stem Cells. 2015;7:641–648. doi: 10.4252/wjsc.v7.i3.641. PubMed DOI PMC

Chen M., Xiang Z., Cai J. The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res. 2013;1532:63–75. doi: 10.1016/j.brainres.2013.07.037. PubMed DOI

Mesentier-Louro L.A., Zaverucha-Do-Valle C., Da Silva-Junior A.J., Nascimento-Dos-Santos G., Gubert F., De Figueirêdo A.B.P., Torres A.L., Paredes B.D., Teixeira C., Tovar-Moll F., et al. Distribution of Mesenchymal Stem Cells and Effects on Neuronal Survival and Axon Regeneration after Optic Nerve Crush and Cell Therapy. PLoS ONE. 2014;9:e110722. doi: 10.1371/journal.pone.0110722. PubMed DOI PMC

Duan P., Xu H., Zeng Y., Wang Y., Yin Z.Q. Human Bone Marrow Stromal Cells can Differentiate to a Retinal Pigment Epithelial Phenotype when Co-Cultured with Pig Retinal Pigment Epithelium using a Transwell System. Cell. Physiol. Biochem. 2013;31:601–613. doi: 10.1159/000350080. PubMed DOI

Rezanejad H., Soheili Z.-S., Haddad F., Matin M.M., Samiei S., Manafi A., Ahmadieh H. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene. Cell Tissue Res. 2014;356:65–75. doi: 10.1007/s00441-014-1795-y. PubMed DOI

Hermankova B., Kossl J., Javorkova E., Bohacova P., Hajkova M., Zajicova A., Krulova M., Holan V. The Identification of Interferon-γ as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells. Stem Cells Dev. 2017;26:1399–1408. doi: 10.1089/scd.2017.0111. PubMed DOI

Le Blanc K., Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J. Intern. Med. 2007;262:509–525. doi: 10.1111/j.1365-2796.2007.01844.x. PubMed DOI

Abumaree M., Al Jumah M., Pace R.A., Kalionis B. Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2011;8:375–392. doi: 10.1007/s12015-011-9312-0. PubMed DOI

Reinshagen H., Sorg R.V., Boehringer D., Eberwein P., Sundmacher R., Reinhard T., Auw-Haedrich C., Schwartzkopff J. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. 2009;89:741–748. doi: 10.1111/j.1755-3768.2009.01812.x. PubMed DOI

Holan V., Javorkova E. Mesenchymal Stem Cells, Nanofiber Scaffolds and Ocular Surface Reconstruction. Stem Cell Rev. Rep. 2013;9:609–619. doi: 10.1007/s12015-013-9449-0. PubMed DOI

Čejková J., Trosan P., Čejka Č., Lencova A., Zajicova A., Javorkova E., Kubinová Š., Syková E., Holan V. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp. Eye Res. 2013;116:312–323. doi: 10.1016/j.exer.2013.10.002. PubMed DOI

Holan V., Trosan P., Cejka C., Javorkova E., Zajicova A., Hermankova B., Chudickova M., Cejkova J. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl. Med. 2015;4:1052–1063. doi: 10.5966/sctm.2015-0039. PubMed DOI PMC

Sahu A., Foulsham W., Amouzegar A., Mittal S.K., Chauhan S.K. The therapeutic application of mesenchymal stem cells at the ocular surface. Ocul. Surf. 2019;17:198–207. doi: 10.1016/j.jtos.2019.01.006. PubMed DOI PMC

Wang Y., Han Z.-B., Ma J., Zuo C., Geng J., Gong W., Sun Y., Li H., Wang B., Zhang L., et al. A Toxicity Study of Multiple-Administration Human Umbilical Cord Mesenchymal Stem Cells in Cynomolgus Monkeys. Stem Cells Dev. 2012;21:1401–1408. doi: 10.1089/scd.2011.0441. PubMed DOI

Lalu M.M., McIntyre L., Pugliese C., Fergusson D., Winston B.W., Marshall J.C., Granton J., Stewart D.J. Canadian Critical Care Trials Group. Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE. 2012;7:e47559. doi: 10.1371/journal.pone.0047559. PubMed DOI PMC

Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. PubMed DOI

Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. PubMed DOI

Phinney D.G., Prockop D.J. Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair-Current Views. Stem Cells. 2007;25:2896–2902. doi: 10.1634/stemcells.2007-0637. PubMed DOI

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Musina R.A., Bekchanova E.S., Sukhikh G.T. Comparison of Mesenchymal Stem Cells Obtained from Different Human Tissues. Bull. Exp. Biol. Med. 2005;139:504–509. doi: 10.1007/s10517-005-0331-1. PubMed DOI

Strioga M., Viswanathan S., Darinskas A., Slaby O., Michalek J. Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells Dev. 2012;21:2724–2752. doi: 10.1089/scd.2011.0722. PubMed DOI

Isobe Y., Koyama N., Nakao K., Osawa K., Ikeno M., Yamanaka S., Okubo Y., Fujimura K., Bessho K. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int. J. Oral Maxillofac. Surg. 2016;45:124–131. doi: 10.1016/j.ijom.2015.06.022. PubMed DOI

Rasmusson I., Ringdén O., Sundberg B., Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp. Cell Res. 2005;305:33–41. doi: 10.1016/j.yexcr.2004.12.013. PubMed DOI

Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. doi: 10.1182/blood.V99.10.3838. PubMed DOI

Bartholomew A., Sturgeon C., Siatskas M., Ferrer K., McIntosh K., Patil S., Hardy W., Devine S., Ucker D., Deans R., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002;30:42–48. doi: 10.1016/S0301-472X(01)00769-X. PubMed DOI

Xu G., Zhang L., Ren G., Yuan Z., Zhang Y., Zhao R.C., Shi Y. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res. 2007;17:240–248. doi: 10.1038/cr.2007.4. PubMed DOI

Jia Z., Jiao C., Zhao S., Li X., Ren X., Zhang L., Han Z.C., Zhang X. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp. Eye Res. 2012;102:44–49. doi: 10.1016/j.exer.2012.06.008. PubMed DOI

Oh J.Y., Lee R.H., Yu J.M., Ko J.H., Lee H.J., Ko A.Y., Roddy G.W., Prockop D.J. Intravenous Mesenchymal Stem Cells Prevented Rejection of Allogeneic Corneal Transplants by Aborting the Early Inflammatory Response. Mol. Ther. 2012;20:2143–2152. doi: 10.1038/mt.2012.165. PubMed DOI PMC

Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M., Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–1441. doi: 10.1016/S0140-6736(04)16104-7. PubMed DOI

Lazarus H.M., Koc O.N., Devine S.M., Curtin P., Maziarz R.T., Holland H.K., Shpall E.J., McCarthy P., Atkinson K., Cooper B.W., et al. Cotransplantation of HLA-Identical Sibling Culture-Expanded Mesenchymal Stem Cells and Hematopoietic Stem Cells in Hematologic Malignancy Patients. Biol. Blood Marrow Transplant. 2005;11:389–398. doi: 10.1016/j.bbmt.2005.02.001. PubMed DOI

Luo C.-J., Zhang F.-J., Zhang L., Geng Y.-Q., Li Q.-G., Hong Q., Fu B., Zhu F., Cui S.-Y., Feng Z., et al. Mesenchymal Stem Cells Ameliorate Sepsis-associated Acute Kidney Injury in Mice. Shock. 2014;41:123–129. doi: 10.1097/SHK.0000000000000080. PubMed DOI

Zappia E., Casazza S., Pedemonte E., Benvenuto F., Bonanni I., Gerdoni E., Giunti D., Ceravolo A., Cazzanti F., Frassoni F., et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755–1761. doi: 10.1182/blood-2005-04-1496. PubMed DOI

Augello A., Tasso R., Negrini S.M., Cancedda R., Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56:1175–1186. doi: 10.1002/art.22511. PubMed DOI

English K., Ryan J.M., Tobin L.M., Murphy M.J., Barry F.P., Mahon B.P. Cell contact, prostaglandin E2and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25Highforkhead box P3+regulatory T cells. Clin. Exp. Immunol. 2009;156:149–160. doi: 10.1111/j.1365-2249.2009.03874.x. PubMed DOI PMC

Meisel R., Zibert A., Laryea M., Göbel U., Däubener W., Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood. 2004;103:4619–4621. doi: 10.1182/blood-2003-11-3909. PubMed DOI

Akiyama K., Chen C., Wang D., Xu X., Qu C., Yamaza T., Cai T., Chen W., Sun L., Shi S. Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis. Cell Stem Cell. 2012;10:544–555. doi: 10.1016/j.stem.2012.03.007. PubMed DOI PMC

Ghannam S., Pène J., Torcy-Moquet G., Jorgensen C., Yssel H. Mesenchymal Stem Cells Inhibit Human Th17 Cell Differentiation and Function and Induce a T Regulatory Cell Phenotype. J. Immunol. 2010;185:302–312. doi: 10.4049/jimmunol.0902007. PubMed DOI

Svobodova E., Krulova M., Zajicova A., Pokorna K., Prochazkova J., Trosan P., Holan V. The Role of Mouse Mesenchymal Stem Cells in Differentiation of Naive T-Cells into Anti-Inflammatory Regulatory T-Cell or Proinflammatory Helper T-Cell 17 Population. Stem Cells Dev. 2012;21:901–910. doi: 10.1089/scd.2011.0157. PubMed DOI PMC

Holan V., Hermankova B., Bohacova P., Kossl J., Chudickova M., Hajkova M., Krulova M., Zajicova A., Javorkova E. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Rev. Rep. 2016;12:654–663. doi: 10.1007/s12015-016-9688-y. PubMed DOI

Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. Mesenchymal Stem Cells Are Recruited into Wounded Skin and Contribute to Wound Repair by Transdifferentiation into Multiple Skin Cell Type. J. Immunol. 2008;180:2581–2587. doi: 10.4049/jimmunol.180.4.2581. PubMed DOI

Lan Y., Kodati S., Lee H.S., Omoto M., Jin Y., Chauhan S.K. Kinetics and Function of Mesenchymal Stem Cells in Corneal Injury. Investig. Opthalmol. Vis. Sci. 2012;53:3638–3644. doi: 10.1167/iovs.11-9311. PubMed DOI

Assis A.C.M., Carvalho J.L., Jacoby B.A., Ferreira R.L.B., Castanheira P., Diniz S.O.F., Cardoso V.N., Goes A.M., Ferreira A.J. Time-Dependent Migration of Systemically Delivered Bone Marrow Mesenchymal Stem Cells to the Infarcted Heart. Cell Transplant. 2010;19:219–230. doi: 10.3727/096368909X479677. PubMed DOI

Javorkova E., Trosan P., Zajicova A., Krulová M., Hajkova M., Holan V. Modulation of the Early Inflammatory Microenvironment in the Alkali-Burned Eye by Systemically Administered Interferon-γ-Treated Mesenchymal Stromal Cells. Stem Cells Dev. 2014;23:2490–2500. doi: 10.1089/scd.2013.0568. PubMed DOI PMC

Holan V., Echalar B., Palacka K., Kossl J., Bohacova P., Krulova M., Brejchova J., Svoboda P., Zajicova A. The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients. Stem Cell Rev. Rep. 2021 doi: 10.1007/s12015-021-10126-w. PubMed DOI

Ponte A.L., Marais E., Gallay N., Langonné A., Delorme B., Hérault O., Charbord P., Domenech J. The In Vitro Migration Capacity of Human Bone Marrow Mesenchymal Stem Cells: Comparison of Chemokine and Growth Factor Chemotactic Activities. Stem Cells. 2007;25:1737–1745. doi: 10.1634/stemcells.2007-0054. PubMed DOI

Li L., Jiang J. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front. Med. 2011;5:33–39. doi: 10.1007/s11684-011-0114-1. PubMed DOI

Hermankova B., Kossl J., Bohacova P., Javorkova E., Hajkova M., Krulova M., Zajicova A., Holan V. The Immunomodulatory Potential of Mesenchymal Stem Cells in a Retinal Inflammatory Environment. Stem Cell Rev. Rep. 2019;15:880–891. doi: 10.1007/s12015-019-09908-0. PubMed DOI

Grunnet L.G., Aikin R., Tonnesen M.F., Paraskevas S., Blaabjerg L., Storling J., Rosenberg L., Billestrup N., Maysinger D., Mandrup-Poulsen T. Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in -Cells. Diabetes. 2009;58:1807–1815. doi: 10.2337/db08-0178. PubMed DOI PMC

Yang L., Zhang S., Duan H., Dong M., Hu X., Zhang Z., Wang Y., Zhang X., Shi W., Zhou Q. Different Effects of Pro-Inflammatory Factors and Hyperosmotic Stress on Corneal Epithelial Stem/Progenitor Cells and Wound Healing in Mice. Stem Cells Transl. Med. 2019;8:46–57. doi: 10.1002/sctm.18-0005. PubMed DOI PMC

Woodward A.M., Di Zazzo A., Bonini S., Argüeso P. Endoplasmic reticulum stress promotes inflammation-mediated proteolytic activity at the ocular surface. Sci. Rep. 2020;10:1–9. doi: 10.1038/s41598-020-59237-3. PubMed DOI PMC

Khubutiya M.S., Vagabov A.V., Temnov A.A., Sklifas A.N. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 2014;16:579–585. doi: 10.1016/j.jcyt.2013.07.017. PubMed DOI

Kossl J., Bohacova P., Hermankova B., Javorkova E., Zajicova A., Holan V. Anti-Apoptotic Properties of Mesenchymal Stem Cells in a Mouse Model of Corneal Inflammation. Stem Cells Dev. 2021 doi: 10.1089/scd.2020.0195. PubMed DOI

García R., Aguiar J., Alberti E., De La Cuétara K., Pavón N. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem. Biophys. Res. Commun. 2004;316:753–754. doi: 10.1016/j.bbrc.2004.02.111. PubMed DOI

Zhang Y., Wang W. Effects of Bone Marrow Mesenchymal Stem Cell Transplantation on Light-Damaged Retina. Investig. Opthalmol. Vis. Sci. 2010;51:3742–3748. doi: 10.1167/iovs.08-3314. PubMed DOI

Zwart I., Hill A.J., Al-Allaf F., Shah M., Girdlestone J., Sanusi A.B., Mehmet H., Navarrete R., Navarrete C., Jen L.-S. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp. Neurol. 2009;216:439–448. doi: 10.1016/j.expneurol.2008.12.028. PubMed DOI

Meirelles L.D.S., Fontes A.M., Covas D.T., Caplan A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–427. doi: 10.1016/j.cytogfr.2009.10.002. PubMed DOI

Xu W., Wang X., Xu G., Guo J. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro. Arq. Bras. Oftalmol. 2013;76:105–110. doi: 10.1590/S0004-27492013000200010. PubMed DOI

Inoue Y., Iriyama A., Ueno S., Takahashi H., Kondo M., Tamaki Y., Araie M., Yanagi Y. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp. Eye Res. 2007;85:234–241. doi: 10.1016/j.exer.2007.04.007. PubMed DOI

Notara M., Hernandez D., Mason C., Daniels J.T. Characterization of the phenotype and functionality of corneal epithelial cells derived from mouse embryonic stem cells. Regen. Med. 2012;7:167–178. doi: 10.2217/rme.11.117. PubMed DOI

Gu S., Xing C., Han J., Tso M.O., Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol. Vis. 2009;15:99–107. PubMed PMC

Jiang T.-S., Cai L., Ji W.-Y., Hui Y.-N., Wang Y.-S., Hu D., Zhu J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol. Vis. 2010;16:1304–1316. PubMed PMC

Trosan P., Svobodova E., Chudickova M., Krulova M., Zajicova A., Holan V. The Key Role of Insulin-Like Growth Factor I in Limbal Stem Cell Differentiation and the Corneal Wound-Healing Process. Stem Cells Dev. 2012;21:3341–3350. doi: 10.1089/scd.2012.0180. PubMed DOI PMC

Tropel P., Platet N., Platel J.-C., Noël D., Albrieux M., Benabid A.-L., Berger F. Functional Neuronal Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells. 2006;24:2868–2876. doi: 10.1634/stemcells.2005-0636. PubMed DOI

Kicic A., Shen W.-Y., Wilson A.S., Constable I.J., Robertson T., Rakoczy P.E. Differentiation of Marrow Stromal Cells into Photoreceptors in the Rat Eye. J. Neurosci. 2003;23:7742–7749. doi: 10.1523/JNEUROSCI.23-21-07742.2003. PubMed DOI PMC

Nadri S., Kazemi B., Eeslaminejad M.B., Yazdani S., Soleimani M., Eslaminejad M.B. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol. Biol. Rep. 2013;40:3883–3890. doi: 10.1007/s11033-012-2360-y. PubMed DOI

Salehi H., Amirpour N., Razavi S., Esfandiari E., Zavar R. Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann. Anat. Anat. Anz. 2017;210:52–63. doi: 10.1016/j.aanat.2016.11.010. PubMed DOI

Castanheira P., Torquetti L., Nehemy M.B., Goes A.M. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats. Arq. Bras. Oftalmol. 2008;71:644–650. doi: 10.1590/S0004-27492008000500007. PubMed DOI

Huo D.-M., Dong F.-T., Yu W.-H., Gao F. Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa. Int. J. Ophthalmol. 2010;3:216–219. PubMed PMC

Huang C., Zhang J., Ao M., Li Y., Zhang C., Xu Y., Li X., Wang W. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype. J. Cell. Biochem. 2011;113:590–598. doi: 10.1002/jcb.23383. PubMed DOI

Mathivanan I., Trepp C.M., Brunold C., Baerlocher G.M., Enzmann V. Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Exp. Cell Res. 2015;333:11–20. doi: 10.1016/j.yexcr.2015.02.001. PubMed DOI

Croitoru-Lamoury J., Lamoury F.M.J., Caristo M., Suzuki K., Walker D., Takikawa O., Taylor R., Brew B.J. Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO) PLoS ONE. 2011;6:e14698. doi: 10.1371/journal.pone.0014698. PubMed DOI PMC

Wong G., Goldshmit Y., Turnley A.M. Interferon-γ but not TNFα promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp. Neurol. 2004;187:171–177. doi: 10.1016/j.expneurol.2004.01.009. PubMed DOI

Liang X., Ding Y., Zhang Y., Tse H.F., Lian Q. Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplant. 2014;23:1045–1059. doi: 10.3727/096368913X667709. PubMed DOI

Adak S., Magdalene D., Deshmukh S., Das D., Jaganathan B.G. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev. Rep. 2021:1–20. doi: 10.1007/s12015-020-10090-x. PubMed DOI PMC

Yu B., Shao H., Su C., Jiang Y., Chen X., Bai L., Zhang Y., Li Q., Zhang X., Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci. Rep. 2016;6:srep34562. doi: 10.1038/srep34562. PubMed DOI PMC

Mead B., Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl. Med. 2017;6:1273–1285. doi: 10.1002/sctm.16-0428. PubMed DOI PMC

Islam M.N., Das S.R., Emin M.T., Wei M., Sun L., Westphalen K., Rowlands D.J., Quadri S.K., Bhattacharya S., Bhattacharya J. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012;18:759–765. doi: 10.1038/nm.2736. PubMed DOI PMC

Paliwal S., Chaudhuri R., Agrawal A., Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 2018;25:1–12. doi: 10.1186/s12929-018-0429-1. PubMed DOI PMC

Eells J.T. Mitochondrial Dysfunction in the Aging Retina. Biology. 2019;8:31. doi: 10.3390/biology8020031. PubMed DOI PMC

Freeman B.T., Kouris N.A., Ogle B.M. Tracking Fusion of Human Mesenchymal Stem Cells After Transplantation to the Heart. Stem Cells Transl. Med. 2015;4:685–694. doi: 10.5966/sctm.2014-0198. PubMed DOI PMC

Azizi Z., Lange C., Paroni F., Ardestani A., Meyer A., Wu Y., Zander A.R., Westenfelder C., Maedler K. β-MSCs: Successful fusion of MSCs with β-cells results in a β-cell like phenotype. Oncotarget. 2016;7:48963–48977. doi: 10.18632/oncotarget.10214. PubMed DOI PMC

Yang Z., Li K., Yan X., Dong F., Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010;248:1415–1422. doi: 10.1007/s00417-010-1384-z. PubMed DOI

Mendel T.A., Clabough E.B.D., Kao D.S., Demidova-Rice T.N., Durham J.T., Zotter B.C., Seaman S.A., Cronk S.M., Rakoczy E.P., Katz A.J., et al. Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy. PLoS ONE. 2013;8:e65691. doi: 10.1371/annotation/679017bf-abd5-44ce-9e20-5e7af1cd3468. PubMed DOI PMC

Rajashekhar G., Ramadan A., Abburi C., Callaghan B., Traktuev D.O., Evans-Molina C., Maturi R., Harris A., Kern T.S., March K.L. Regenerative Therapeutic Potential of Adipose Stromal Cells in Early Stage Diabetic Retinopathy. PLoS ONE. 2014;9:e84671. doi: 10.1371/journal.pone.0084671. PubMed DOI PMC

Ezquer F., Ezquer M., Conget P., Arango-Rodriguez M. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol. 2013;92:e86–e95. doi: 10.1111/aos.12113. PubMed DOI

Mead B., Berry M., Logan A., Scott R.A., Leadbeater W., Scheven B.A. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14:243–257. doi: 10.1016/j.scr.2015.02.003. PubMed DOI PMC

Holan V., Hermankova B., Kossl J. Perspectives of Stem Cell–Based Therapy for Age-Related Retinal Degenerative Diseases. Cell Transplant. 2017;26:1538–1541. doi: 10.1177/0963689717721227. PubMed DOI PMC

Holan V., Hermankova B., Krulova M., Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cell-a clue to stem cell-based therapy. World J. Stem Cells. 2019;11:957–967. doi: 10.4252/wjsc.v11.i11.957. PubMed DOI PMC

Park S.S., Moisseiev E., Bauer G., Anderson J.D., Grant M.B., Zam A., Zawadzki R.J., Werner J.S., Nolta J.A. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog. Retin. Eye Res. 2017;56:148–165. doi: 10.1016/j.preteyeres.2016.10.002. PubMed DOI PMC

Ng T.K., Fortino V.R., Pelaez D., Cheung H.S. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J. Stem Cells. 2014;6:111–119. doi: 10.4252/wjsc.v6.i2.111. PubMed DOI PMC

Labrador-Velandia S., Alonso-Alonso M.L., Alvarez-Sanchez S., González-Zamora J., Carretero-Barrio I., Pastor J.C., Fernandez-Bueno I., Srivastava G.K. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials. World J. Stem Cells. 2016;8:376–383. doi: 10.4252/wjsc.v8.i11.376. PubMed DOI PMC

Zhang X.-Y., Ng T.K., Brelén M.E., Wu D., Wang J.X., Chan K.P., Yung J.S.Y., Cao D., Wang Y., Zhang S., et al. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction. Sci. Rep. 2016;6 doi: 10.1038/srep37279. PubMed DOI PMC

Chowers G., Cohen M., Marks-Ohana D., Stika S., Eijzenberg A., Banin E., Obolensky A. Course of Sodium Iodate–Induced Retinal Degeneration in Albino and Pigmented Mice. Investig. Opthalmol. Vis. Sci. 2017;58:2239–2249. doi: 10.1167/iovs.16-21255. PubMed DOI

Tao Y., Chen T., Fang W., Peng G., Wang L., Qin L., Liu B., Huang Y.F. The temporal topography of the N-Methyl- N-nitrosourea induced photoreceptor degeneration in mouse retina. Sci. Rep. 2015;5 doi: 10.1038/srep18612. PubMed DOI PMC

Pirmardan E.R., Soheili Z.-S., Samiei S., Ahmadieh H., Mowla S.J., Naseri M., Daftarian N. In Vivo Evaluation of PAX6 Overexpression and NMDA Cytotoxicity to Stimulate Proliferation in the Mouse Retina. Sci. Rep. 2018;8:17700. doi: 10.1038/s41598-018-35884-5. PubMed DOI PMC

Jin Z.-B., Gao M.-L., Deng W.-L., Wu K.-C., Sugita S., Mandai M., Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog. Retin. Eye Res. 2019;69:38–56. doi: 10.1016/j.preteyeres.2018.11.003. PubMed DOI

Ludwig P.E., Freeman S.C., Janot A.C. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int. J. Retin. Vitr. 2019;5:1–14. doi: 10.1186/s40942-019-0158-y. PubMed DOI PMC

Nuzzi R., Tridico F. Perspectives of Autologous Mesenchymal Stem-Cell Transplantation in Macular Hole Surgery: A Review of Current Findings. J. Ophthalmol. 2019;2019:1–8. doi: 10.1155/2019/3162478. PubMed DOI PMC

Wagner W., Ho A.D., Zenke M. Different Facets of Aging in Human Mesenchymal Stem Cells. Tissue Eng. Part B Rev. 2010;16:445–453. doi: 10.1089/ten.teb.2009.0825. PubMed DOI

Rombouts W.J.C., Ploemacher E.R. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17:160–170. doi: 10.1038/sj.leu.2402763. PubMed DOI

Eggenhofer E., Benseler V., Kroemer H., Popp F., Geissler E., Schlitt H., Baan C., Dahlke M., Hoogduijn M.J. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front. Immunol. 2012;3:297. doi: 10.3389/fimmu.2012.00297. PubMed DOI PMC

Huang H., Kolibabka M., Eshwaran R., Chatterjee A., Schlotterer A., Willer H., Bieback K., Hammes H.-P., Feng Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J. 2019;33:14668–14679. doi: 10.1096/fj.201901500R. PubMed DOI

Oner A., Gonen Z.B., Sinim N., Cetin M., Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: A phase I clinical safety study. Stem Cell Res. Ther. 2016;7 doi: 10.1186/s13287-016-0432-y. PubMed DOI PMC

Kahraman N.S. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: A 6-month follow-up results of a phase 3 trial. Int. J. Ophthalmol. 2020;13:1423–1429. doi: 10.18240/ijo.2020.09.14. PubMed DOI PMC

Oumlzmert E., Arslan U. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: Prospective analysis of 1-year results. Stem Cell Res. Ther. 2020;11:353. doi: 10.1186/s13287-020-01870-w. PubMed DOI PMC

Niwa M., Aoki H., Hirata A., Tomita H., Green P.G., Hara A. Retinal Cell Degeneration in Animal Models. Int. J. Mol. Sci. 2016;17:110. doi: 10.3390/ijms17010110. PubMed DOI PMC

Hanus J., Anderson C., Sarraf D., Ma J., Wang S. Retinal pigment epithelial cell necroptosis in response to sodium iodate. Cell Death Discov. 2016;2:16054. doi: 10.1038/cddiscovery.2016.54. PubMed DOI PMC

Mao X., Pan T., Shen H., Xi H., Yuan S., Liu Q. The rescue effect of mesenchymal stem cell on sodium iodate-induced retinal pigment epithelial cell death through deactivation of NF-κB-mediated NLRP3 inflammasome. Biomed. Pharmacother. 2018;103:517–523. doi: 10.1016/j.biopha.2018.04.038. PubMed DOI

Moriguchi M., Nakamura S., Inoue Y., Nishinaka A., Nakamura M., Shimazawa M., Hara H. Irreversible Photoreceptors and RPE Cells Damage by Intravenous Sodium Iodate in Mice Is Related to Macrophage Accumulation. Investig. Opthalmol. Vis. Sci. 2018;59:3476–3487. doi: 10.1167/iovs.17-23532. PubMed DOI

Liu Y., Li Y., Wang C., Zhang Y., Su G. Morphologic and histopathologic change of sodium iodate-induced retinal degeneration in adult rats. Int. J. Clin. Exp. Pathol. 2019;12:443–454. PubMed PMC

Bhutto I.A., Ogura S., Baldeosingh R., McLeod D.S., Lutty G.A., Edwards M.M. An Acute Injury Model for the Phenotypic Characteristics of Geographic Atrophy. Investig. Opthalmol. Vis. Sci. 2018;59:AMD143–AMD151. doi: 10.1167/iovs.18-24245. PubMed DOI PMC

Ahn S.M., Ahn J., Cha S., Yun C., Park T.K., Kim Y.-J., Goo Y.S., Kim S.-W. The effects of intravitreal sodium iodate injection on retinal degeneration following vitrectomy in rabbits. Sci. Rep. 2019;9:15696–15710. doi: 10.1038/s41598-019-52172-y. PubMed DOI PMC

Barzelay A., Algor S.W., Niztan A., Katz S., Benhamou M., Nakdimon I., Azmon N., Gozlan S., Mezad-Koursh D., Neudorfer M., et al. Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress. Stem Cells Int. 2018;2018:1–11. doi: 10.1155/2018/9682856. PubMed DOI PMC

Gong L., Wu Q., Song B., Lu B., Zhang Y. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin. Exp. Ophthalmol. 2008;36:666–671. doi: 10.1111/j.1442-9071.2008.01857.x. PubMed DOI

Fiori A., Terlizzi V., Kremer H., Gebauer J., Hammes H.-P., Harmsen M.C., Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology. 2018;223:729–743. doi: 10.1016/j.imbio.2018.01.001. PubMed DOI

Ezquer M., Urzua C.A., Montecino S., Leal K., Conget P., Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res. Ther. 2016;7:42. doi: 10.1186/s13287-016-0299-y. PubMed DOI PMC

Zhang W., Wang Y., Kong J., Dong M., Duan H., Chen S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-00298-2. PubMed DOI PMC

Kong J.-H., Zheng D., Chen S., Duan H.-T., Wang Y.-X., Dong M., Song J. A comparative study on the transplantation of different concentrations of human umbilical mesenchymal cells into diabetic rats. Int. J. Ophthalmol. 2015;8:257–262. PubMed PMC

Cronk S.M., Kelly-Goss M.R., Ray H.C., Mendel T.A., Hoehn K.L., Bruce A.C., Dey B.K., Guendel A.M., Tavakol D.N., Herman I.M., et al. Adipose-Derived Stem Cells From Diabetic Mice Show Impaired Vascular Stabilization in a Murine Model of Diabetic Retinopathy. Stem Cells Transl. Med. 2015;4:459–467. doi: 10.5966/sctm.2014-0108. PubMed DOI PMC

Nagaishi K., Mizue Y., Chikenji T., Otani M., Nakano M., Saijo Y., Tsuchida H., Ishioka S., Nishikawa A., Saito T., et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci. Rep. 2017;7:1–17. doi: 10.1038/s41598-017-08921-y. PubMed DOI PMC

Robinson R., Barathi V.A., Chaurasia S.S., Wong T.Y., Kern T.S. Update on animal models of diabetic retinopathy: From molecular approaches to mice and higher mammals. Dis. Model. Mech. 2012;5:444–456. doi: 10.1242/dmm.009597. PubMed DOI PMC

Lai A.K.W., Lo A.C.Y. Animal Models of Diabetic Retinopathy: Summary and Comparison. J. Diabetes Res. 2013;2013:1–29. doi: 10.1155/2013/106594. PubMed DOI PMC

Araújo R.S., Silva M.S., Santos D.F., Silva G.A. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2Akita mouse. Exp. Eye Res. 2020;194 doi: 10.1016/j.exer.2020.108027. PubMed DOI

Elshaer S.L., Evans W., Pentecost M., Lenin R., Periasamy R., Jha K.A., Alli S., Gentry J., Thomas S.M., Sohl N., et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res. Ther. 2018;9:1–18. doi: 10.1186/s13287-018-1059-y. PubMed DOI PMC

Van Hove I., De Groef L., Boeckx B., Modave E., Hu T.-T., Beets K., Etienne I., Van Bergen T., Lambrechts D., Moons L., et al. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Diabetologia. 2020;63:2235–2248. doi: 10.1007/s00125-020-05218-0. PubMed DOI

Chaurasia S.S., Lim R.R., Parikh B.H., Wey Y.S., Tun B.B., Wong T.Y., Luu C.D., Agrawal R., Ghosh A., Mortellaro A., et al. The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-21198-z. PubMed DOI PMC

Rivas M.A., Vecino E. Animal models and different therapies for treatment of retinitis pigmentosa. Histol. Histopathol. 2009;24:1295–1322. doi: 10.14670/HH-24.1295. PubMed DOI

He Y., Zhang Y., Liu X., Ghazaryan E., Li Y., Xie J., Su G. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. Int. J. Mol. Sci. 2014;15:14456–14474. doi: 10.3390/ijms150814456. PubMed DOI PMC

Tsubura A., Yoshizawa K., Kuwata M., Uehara N. Animal models for retinitis pigmentosa induced by MNU, disease pro-gression, mechanisms and therapeutic trials. Histol. Histopathol. 2010;25:933–944. doi: 10.14670/HH-25.933. PubMed DOI

Zhou T., Huang Z., Sun X., Zhu X., Zhou L., Li M., Cheng B., Liu X., He C. Microglia Polarization with M1/M2 Phenotype Changes in rd1 Mouse Model of Retinal Degeneration. Front. Neuroanat. 2017;11:77. doi: 10.3389/fnana.2017.00077. PubMed DOI PMC

Gargini C., Terzibasi E., Mazzoni F., Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: A morphological and ERG study. J. Comp. Neurol. 2006;500:222–238. doi: 10.1002/cne.21144. PubMed DOI PMC

Zhao L., Zabel M.K., Wang X., Ma W., Shah P., Fariss R.N., Qian H., Parkhurst C.N., Gan W., Wong W.T. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 2015;7:1179–1197. doi: 10.15252/emmm.201505298. PubMed DOI PMC

Kameya S., Hawes N.L., Chang B., Heckenlively J.R., Naggert J.K., Nishina P.M. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum. Mol. Genet. 2002;11:1879–1886. doi: 10.1093/hmg/11.16.1879. PubMed DOI

D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., Lavail M.M., Vollrath D. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 2000;9:645–651. doi: 10.1093/hmg/9.4.645. PubMed DOI

Di Pierdomenico J., García-Ayuso D., Pinilla I., Cuenca N., Vidal-Sanz M., Agudo-Barriuso M., Villegas-Pérez M.P. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities. Front. Neuroanat. 2017;11:14. doi: 10.3389/fnana.2017.00014. PubMed DOI PMC

Otani A., Dorrell M.I., Kinder K., Moreno S.K., Nusinowitz S., Banin E., Heckenlively J., Friedlander M. Rescue of retinal degen-eration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J. Clin. Investig. 2004;114:765–774. doi: 10.1172/JCI200421686. PubMed DOI PMC

Lejkowska R., Kawa M.P., Pius-Sadowska E., Rogińska D., Łuczkowska K., Machaliński B., Machalińska A. Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. Int. J. Mol. Sci. 2019;20:777. doi: 10.3390/ijms20030777. PubMed DOI PMC

Qu L., Gao L., Xu H., Duan P., Zeng Y., Liu Y., Yin Z.Q. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-00241-5. PubMed DOI PMC

Deng C.-L., Hu C.-B., Wang B.-Y., Xiong Y.-C., Chen T., Zhao N., Bao L.-H., Quan R., Du F.-Y., Sui B.-D., et al. Bone progeria diminished the therapeutic effects of bone marrow mesenchymal stem cells on retinal degeneration. Biochem. Biophys. Res. Commun. 2020;531:180–186. doi: 10.1016/j.bbrc.2020.07.007. PubMed DOI

Johnson T.V., Tomarev S.I. Rodent models of glaucoma. Brain Res. Bull. 2010;81:349–358. doi: 10.1016/j.brainresbull.2009.04.004. PubMed DOI PMC

Harada C., Kimura A., Guo X., Namekata K., Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br. J. Ophthalmol. 2018;103:161–166. doi: 10.1136/bjophthalmol-2018-312724. PubMed DOI PMC

Overby D.R., Clark A.F. Animal models of glucocorticoid-induced glaucoma. Exp. Eye Res. 2015;141:15–22. doi: 10.1016/j.exer.2015.06.002. PubMed DOI PMC

Biswas S., Wan K.H. Review of rodent hypertensive glaucoma models. Acta Ophthalmol. 2019;97:e331–e340. doi: 10.1111/aos.13983. PubMed DOI

Bai Y., Zhu Y., Chen Q., Xu J., Sarunic M.V., Saragovi U.H., Zhuo Y. Validation of glaucoma-like features in the rat episcleral vein cauterization model. Chin. Med. J. 2014;127:359–364. PubMed

Huang W., Hu F., Wang M., Gao F., Xu P., Xing C., Sun X., Zhang S., Wu J. Comparative analysis of retinal ganglion cell damage in three glaucomatous rat models. Exp. Eye Res. 2018;172:112–122. doi: 10.1016/j.exer.2018.03.019. PubMed DOI

Mead B., Hill L.J., Blanch R.J., Ward K., Logan A., Berry M., Leadbeater W., Scheven B.A. Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy. 2016;18:487–496. doi: 10.1016/j.jcyt.2015.12.002. PubMed DOI

Johnson T.V., Bull N.D., Hunt D.P., Marina N., Tomarev S.I., Martin K.R. Neuroprotective Effects of Intravitreal Mesenchymal Stem Cell Transplantation in Experimental Glaucoma. Investig. Opthalmol. Vis. Sci. 2010;51:2051–2059. doi: 10.1167/iovs.09-4509. PubMed DOI PMC

Manuguerra-Gagné R., Boulos P.R., Ammar A., Leblond F.A., Krosl G., Pichette V., Lesk M.R., Roy D.-C. Transplantation of Mesenchymal Stem Cells Promotes Tissue Regeneration in a Glaucoma Model Through Laser-Induced Paracrine Factor Secretion and Progenitor Cell Recruitment. Stem Cells. 2013;31:1136–1148. doi: 10.1002/stem.1364. PubMed DOI

Emre E., Yüksel N., Duruksu G., Pirhan D., Subaşi C., Erman G., Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow–derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy. 2015;17:543–559. doi: 10.1016/j.jcyt.2014.12.005. PubMed DOI

Pan D., Chang X., Xu M., Zhang M., Zhang S., Wang Y., Luo X., Xu J., Yang X., Sun X. UMSC-derived exosomes promote retinal ganglion cels survival in a rat model of optic nerve crush. J. Chem. Neuroanat. 2019;96:134–139. doi: 10.1016/j.jchemneu.2019.01.006. PubMed DOI

Çerman E., Akkoc T., Eraslan M., Şahin O., Ozkara S., Aker F.V., Subaşı C., Karaoz E., Akkoç T. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495. doi: 10.1371/journal.pone.0156495. PubMed DOI PMC

Roubeix C., Godefroy D., Mias C., Sapienza A., Riancho L., Degardin J., Fradot V., Ivkovic I., Picaud S., Sennlaub F., et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res. Ther. 2015;6:1–13. doi: 10.1186/s13287-015-0168-0. PubMed DOI PMC

Harper M.M., Grozdanic S.D., Blits B., Kuehn M.H., Zamzow D., Buss J.E., Kardon R.H., Sakaguchi D.S. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes. Investig. Opthalmol. Vis. Sci. 2011;52:4506–4515. doi: 10.1167/iovs.11-7346. PubMed DOI PMC

Park S.S., Bauer G., Abedi M., Pontow S., Panorgias A., Jonnal R.S., Zawadzki R.J., Werner J.S., Nolta A.J. Intravitreal Autologous Bone Marrow CD34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investig. Opthalmol. Vis. Sci. 2014;56:81–89. doi: 10.1167/iovs.14-15415. PubMed DOI PMC

Siqueira R.C., Messias A., Voltarelli J.C., Scott I.U., Jorge R. Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy. Retina. 2011;31:1207–1214. doi: 10.1097/IAE.0b013e3181f9c242. PubMed DOI

Gu X., Yu X., Zhao C., Duan P., Zhao T., Liu Y., Li S., Yang Z., Li Y., Qian C., et al. Efficacy and Safety of Autologous Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with Diabetic Retinopathy. Cell. Physiol. Biochem. 2018;49:40–52. doi: 10.1159/000492838. PubMed DOI

Weiss J.N., Levy S. Stem Cell Ophthalmology Treatment Study: Bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig. 2018;5:18. doi: 10.21037/sci.2018.04.02. PubMed DOI PMC

Levy S., Weiss J.N., Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: A preliminary report. Neural Regen. Res. 2015;10:982–988. doi: 10.4103/1673-5374.158365. PubMed DOI PMC

Weiss J.N., Levy S., Benes S.C. Stem Cell Ophthalmology Treatment Study: Bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION) Stem Cell Investig. 2017;4:94. doi: 10.21037/sci.2017.11.05. PubMed DOI PMC

Hoogduijn M.J., Dor F.J.M.F. Mesenchymal Stem Cells: Are We Ready for Clinical Application in Transplantation and Tissue Regeneration? Front. Immunol. 2013;4:144. doi: 10.3389/fimmu.2013.00144. PubMed DOI PMC

Bhattacharya S., Gangaraju R., Chaum E. Recent Advances in Retinal Stem Cell Therapy. Curr. Mol. Biol. Rep. 2017;3:172–182. doi: 10.1007/s40610-017-0069-3. PubMed DOI PMC

Wang Y., Tang Z., Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: A review of clinical trials. Cell Death Dis. 2020;11:1–14. doi: 10.1038/s41419-020-02955-3. PubMed DOI PMC

Tzameret A., Sher I., Belkin M., Treves A.J., Meir A., Nagler A., Levkovitch-Verbin H., Rotenstreich Y., Solomon A.S. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Res. 2015;15:387–394. doi: 10.1016/j.scr.2015.08.007. PubMed DOI

Ji S., Lin S., Chen J., Huang X., Wei C.-C., Li Z., Tang S. Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Curr. Eye Res. 2018;43:810–820. doi: 10.1080/02713683.2018.1440604. PubMed DOI

Velandia S.L., Di Lauro S., Alonso-Alonso M.L., Bartolomé S.T., Srivastava G.K., Pastor J.C., Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017;256:125–134. doi: 10.1007/s00417-017-3842-3. PubMed DOI

Lohan P., Treacy O., Morcos M., Donohoe E., O’Donoghue Y., Ryan A.E., Elliman S.J., Ritter T., Griffin M.D. Interspecies Incompatibilities Limit the Immunomodulatory Effect of Human Mesenchymal Stromal Cells in the Rat. Stem Cells. 2018;36:1210–1215. doi: 10.1002/stem.2840. PubMed DOI

Oh J.Y., Kim M.K., Shin M.S., Wee W.R., Lee J.H. Cytokine secretion by human mesenchymal stem cells cocultured with damaged corneal epithelial cells. Cytokine. 2009;46:100–103. doi: 10.1016/j.cyto.2008.12.011. PubMed DOI

Zhou L., Lopes J.E., Chong M.M.W., Ivanov I.I., Min R., Victora G.D., Shen Y., Du J., Rubtsov Y.P., Rudensky A.Y., et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nat. Cell Biol. 2008;453:236–240. doi: 10.1038/nature06878. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...