The Altered Migration and Distribution of Systemically Administered Mesenchymal Stem Cells in Morphine-Treated Recipients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33582958
DOI
10.1007/s12015-021-10126-w
PII: 10.1007/s12015-021-10126-w
Knihovny.cz E-zdroje
- Klíčová slova
- Acute and chronic morphine treatment, Adhesive molecules, Cell migration, Mesenchymal stem cells, Skin graft model,
- MeSH
- antigeny CD44 MeSH
- cévní buněčněadhezivní molekula-1 MeSH
- hojení ran MeSH
- kůže zranění MeSH
- mezenchymální kmenové buňky * cytologie účinky léků MeSH
- mezibuněčná adhezivní molekula-1 MeSH
- morfin * farmakologie MeSH
- myši MeSH
- pohyb buněk * účinky léků MeSH
- průtoková cytometrie MeSH
- rány a poranění MeSH
- tuková tkáň cytologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD44 MeSH
- cévní buněčněadhezivní molekula-1 MeSH
- Icam1 protein, mouse MeSH Prohlížeč
- mezibuněčná adhezivní molekula-1 MeSH
- morfin * MeSH
Mesenchymal stem cells (MSCs) have the ability to migrate to the site of injury or inflammation, and to contribute to the healing process. Since patients treated with MSCs are often users of analgesic drugs, to relieve their uncomfortable pain associated with the tissue disorder, there is a possibility of negative effects of these drugs on the migration of endogenous and exogenous MSCs. Therefore, we tested the impact of acute and chronic treatment with morphine on the migration and organ distribution of exogenous adipose tissue-derived MSCs in mouse models. Firstly, we showed that the incubation of MSCs with morphine significantly reduced the expression of adhesive molecules CD44 (HCAM), CD54 (ICAM-1) and CD106 (VCAM-1) on MSCs. Using a model of systemic administration of MSCs labeled with vital dye PKH26 and by the application of flow cytometry to detect living CD45-PKH26+ cells, we found a decreased number of labeled MSCs in the lung, spleen and bone marrow, and a significantly increased number of MSCs in the liver of morphine-treated recipients. A skin allograft model was used to study the effects of morphine on the migration of exogenous MSCs to the superficial wound. Intraperitoneally administered MSCs migrated preferentially to the wound site, and this migration was significantly decreased in the morphine-treated recipients. The present results showed that morphine significantly influences the distribution of exogenous MSCs in the body, and decreases their migration to the site of injury.
Zobrazit více v PubMed
Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587. DOI
Lan, Y., Kodati, S., Lee, H. S., Omoto, M., Jin, Y., & Chauhan, S. K. (2012). Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology and Visual Sciences, 53, 3638–3644. DOI
Javorkova, E., Trosan, P., Zajicova, A., Krulova, M., Hajkova, M., & Holan, V. (2014). Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-γ-treated mesenchymal stromal cells. Stem Cells and Development, 23, 2490–2500. DOI
Assis, A. C., Carvalho, J. L., Jacoby, B. A., Ferreira, R. L., Castanheira, P., Diniz, S. O., Cardoso, V. N., Goes, A. M., & Ferreira, A. J. (2010). Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplantation, 19, 219–230. DOI
Wu, Y., & Zhao, R. C. (2012). The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Reviews and Reports, 8, 243–250. DOI
Singh, A., Singh, A., & Sen, D. (2016). Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem Cell Research and Therapy, 7(1), 82. https://doi.org/10.1186/s13287-016-0341-0 . PubMed DOI PMC
Cardenes, N., Aranda-Valderrama, P., Carney, J. P., Sellares Torres, J., Alvarez, D., Kocydirim, E., Wolfram Smith, J. A., Ting, A. E., Lagazzi, L., Yu, Z., Mason, S., Santos, E., Lopresti, B. J., & Rojas, M. (2019). Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model. BMJ Open Respiratory Research. https://doi.org/10.1136/bmjresp-2018-000308 . PubMed DOI PMC
Hajkova, M., Jaburek, F., Porubska, B., Bohacova, P., Holan, V., & Krulova, M. (2019). Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clinical Science (London), 133, 2143–2157. DOI
Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., Baan, C. C., Dahlke, M. H., & Hoogduijn, M. J. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297. DOI
Leibacher, J., & Henschler, R. (2016). Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research and Therapy, 7, 7. https://doi.org/10.1186/s13287-015-0271-2 .
Ji, J. F., He, B. P., Dheen, S. T., & Tay, S. S. (2004). Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 22, 415–427. DOI
Chamberlain, G., Wright, K., Rot, A., Ashton, B., & Middleton, J. (2008). Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PLoS One, 3(8), e2934. https://doi.org/10.1371/journal.pone.0002934 . PubMed DOI PMC
Rankin, S. M. (2012). Chemokines and adult bone marrow stem cells. Immunology Letters, 145, 47–54. DOI
Nitzsche, F., Müller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise Review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460. DOI
Abumaree, M., Al Jumah, M., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews, 8, 375–392. DOI
English, K. (2013). Mechanisms of mesenchymal stromal cell immunomodulation. Immunology and Cell Biology, 91, 19–26. DOI
Holan, V., Hermankova, B., Bohacova, P., Kossl, J., Chudickova, M., Hajkova, M., Krulova, M., Zajicova, A., & Javorkova, E. (2016). Distinct immunoregulatory mechanisms in mesenchymal stem cells: Role of the cytokine environment. Stem Cell Reviews, 12, 654–663. DOI
Bayer, R., Franke., H., Ficker, C., Richter, M., Lessig, R., Büttner, A., & Weber, M. (2015). Alterations of neuronal precursor cells in stages of human adult neurogenesis in heroin addicts. Drug and Alcohol Dependence, 156, 139–149. DOI
Barlass, U., Dutta, R., Cheema, H., George, J., Sareen, A., Dixit, A., Yuan, Z., Giri, B., Meng, J., Banerjee, S., Banerjee, S., Dudeja, V., Dawra, R. K., Roy, S., & Saluja, A. K. (2017). Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut. https://doi.org/10.1136/gutjnl-2017-313717 . PubMed DOI
Wang, Y., Gupta, M., Farooqui, M., Li, Y., Peng, F., Rao, S., Ansonoff, M., Pintar, J. E., & Gupta, K. (2017). Opioids and opioid receptors orchestrate wound repair. Translational Research, 185, 13–23. DOI
Holan, V., Cechova, K., Zajicova, A., Kossl, J., Hermankova, B., Bohacova, P., Hajkova, M., Krulova, M., Svoboda, P., & Javorkova, E. (2018). The impact of morphine on the characteristics and function properties of human mesenchymal stem cells. Stem Cell Reviews and Reports, 14, 801–811. DOI
Hajkova, M., Javorkova, E., Zajicova, A., Trosan, P., Holan, V., & Krulova, M. (2017). A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engineering and Regenerative. Medicine, 11, 1456–1465. DOI
Billingham, R. E., Brent, L., Medawar, P. B., & Sparrow, E. M. (1954). Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proceedings of the Royal Society of London B: Biological Sciences, 143, 43–58. PubMed
Rook, J. M., & McCarson, K. E. (2007). Delay of cutaneous wound closure by morphine via local blockade of peripheral tachykinin release. Biochemical Pharmacology, 74, 752–757. DOI
Bortolotto, V., & Grilli, M. (2017). Opiate analgesics as negative modulators of adult hippocampal neurogenesis: Potential implications in clinical practice. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2017.00254 . PubMed DOI PMC
Lam, C. F., Chang, P. J., Huang, Y. S., et al. (2008). Prolonged use of high-dose morphine impairs angiogenesis and mobilization of endothelial progenitor cells in mice. Anesthesia and Analgesia, 107, 686–692. DOI
Zhang, J., Huang, X., Wang, H., Liu, X., Zhang, T., Wang, Y., & Hu, D. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research and Therapy, 6, 234. DOI
Shim, G., Lee, S., Han, J., Kim, G., Jin, H., Miao, W., Yi, T. G., Cho, Y. K., Song, S. U., & Oh, Y. K. (2015). Pharmacokinetics and in vivo fate of intra-articularly transplanted human bone marrow-derived clonal mesenchymal stem cells. Stem Cells and Development, 24, 1124–1132. DOI
Herrera, M. B., Bussolati, B., Bruno, S., Morando, L., Mauriello-Romanazzi, G., Sanavio, F., Stamenkovic, I., Biancone, L., & Camussi, G. (2007). Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney International, 72, 430–441. DOI
Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering Part B Reviews, 16, 445–453. DOI
Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170. DOI
Liu, X. B., Chen, H., Chen, H. Q., Zhu, M. F., Hu, X. Y., Wang, Y. P., Jiang, Z., Xu, Y. C., Xiang, M. X., & Wang, J. A. (2012). Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. Journal of Zhejiang University - Science B, 13, 616–623. DOI
Rook, J. M., Hasan, W., & McCarson, K. E. (2009). Morphine-induced early delays in wound closure: involvement of sensory neuropeptides and modification of neurokinin receptor expression. Biochemical Pharmacology, 77, 1747–1755. DOI
Chrastil, J., Sampson, C., Jones, K. B., & Higgins, T. F. (2013). Postoperative opioid administration inhibits bone healing in an animal model. Clinical Orthopaedics and Related Research, 471, 4076–4081. DOI
Expression of Opioid Receptors in Cells of the Immune System