Expression of Opioid Receptors in Cells of the Immune System
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LTAUSA18110
Ministerstvo Školství, Mládeže a Tělovýchovy
19-02290S
Grantová Agentura České Republiky
PubMed
33396783
PubMed Central
PMC7795304
DOI
10.3390/ijms22010315
PII: ijms22010315
Knihovny.cz E-zdroje
- Klíčová slova
- addiction, chronic pain, immune cells, opioid drugs, opioid receptors, stem cells,
- MeSH
- biologické markery MeSH
- chronická bolest farmakoterapie etiologie metabolismus MeSH
- imunitní systém účinky léků imunologie metabolismus MeSH
- kmenové buňky účinky léků metabolismus MeSH
- lidé MeSH
- opioidní analgetika farmakologie MeSH
- receptory opiátové genetika metabolismus MeSH
- regulace genové exprese * MeSH
- zánět komplikace etiologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- opioidní analgetika MeSH
- receptory opiátové MeSH
The observation of the immunomodulatory effects of opioid drugs opened the discussion about possible mechanisms of action and led researchers to consider the presence of opioid receptors (OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR subtypes in animal and human immune cells have been performed. Some of them confirmed the expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA either. Although this topic remains controversial, further studies are constantly being published. The most recent articles suggested that the expression level of OR in human peripheral blood lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these findings to clinical practice needs to be verified by further investigations.
Zobrazit více v PubMed
Preston K.L. Drug abstinence effects: Opioids. Br. J. Addict. 1991;86:1641–1646. doi: 10.1111/j.1360-0443.1991.tb01759.x. PubMed DOI
Darcq E., Kieffer B.L. Opioid receptors: Drivers to addiction? Nat. Rev. Neurosci. 2018;19:499–514. doi: 10.1038/s41583-018-0028-x. PubMed DOI
Listos J., Lupina M., Talarek S., Mazur A., Orzelska-Gorka J., Kotlinska J. The mechanisms involved in morphine addiction: An overview. Int. J. Mol. Sci. 2019;20:4302. doi: 10.3390/ijms20174302. PubMed DOI PMC
Kreek M.J. Methadone-related opioid agonist pharmacotherapy for heroin addiction. History, recent molecular and neurochemical research and future in mainstream medicine. Ann. N. Y. Acad. Sci. 2000;909:186–216. doi: 10.1111/j.1749-6632.2000.tb06683.x. PubMed DOI
Ball J.C., Ross A. The Effectiveness of Methadone Maintenance Treatment: Patients, Programs, Services, and Outcome. 1st ed. Springer; New York, NY, USA: 1991.
Connock M., Juarez-Garcia A., Jowett S., Frew E., Liu Z., Taylor R.J., Fry-Smith A., Day E., Lintzeris N., Roberts T., et al. Methadone and buprenorphine for the management of opioid dependence: A systematic review and economic evaluation. Health Technol. Assess. 2007;11:1–171. doi: 10.3310/hta11090. PubMed DOI
Whelan P.J., Remski K. Buprenorphine vs methadone treatment: A review of evidence in both developed and developing worlds. J. Neurosci. Rural Pract. 2012;3:45–50. doi: 10.4103/0976-3147.91934. PubMed DOI PMC
Vadivelu N., Kai A.M., Kodumudi V., Sramcik J., Kaye A.D. The opioid crisis: A comprehensive overview. Curr. Pain Headache Rep. 2018;22:16. doi: 10.1007/s11916-018-0670-z. PubMed DOI
Waldhoer M., Bartlett S.E., Whistler J.L. Opioid receptors. Annu. Rev. Biochem. 2004;73:953–990. doi: 10.1146/annurev.biochem.73.011303.073940. PubMed DOI
Shang Y., Filizola M. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. Eur. J. Pharmacol. 2015;763:206–213. doi: 10.1016/j.ejphar.2015.05.012. PubMed DOI PMC
Erbs E., Faget L., Scherrer G., Matifas A., Filliol D., Vonesch J.L., Koch M., Kessler P., Hentsch D., Birling M.C., et al. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct. 2015;220:677–702. doi: 10.1007/s00429-014-0717-9. PubMed DOI PMC
Ozawa A., Brunori G., Mercatelli D., Wu J., Cippitelli A., Zou B., Xie X.S., Williams M., Zaveri N.T., Low S., et al. Knock-in mice with NOP-eGFP receptors identify receptor cellular and regional localization. J. Neurosci. 2015;35:11682–11693. doi: 10.1523/JNEUROSCI.5122-14.2015. PubMed DOI PMC
Stein C., Zöllner C. Opioids and sensory nerves. Handb. Exp. Pharmacol. 2009;194:495–518. PubMed
Galligan J.J., Sternini C. Insights into the role of opioid receptors in the GI tract: Experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol. 2017;239:363–378. PubMed PMC
Peng J., Sarkar S., Chang S.L. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124:223–228. doi: 10.1016/j.drugalcdep.2012.01.013. PubMed DOI PMC
Connor M., Christie M.D. Opioid receptor signalling mechanisms. Clin. Exp. Pharmacol. Physiol. 1999;26:493–499. doi: 10.1046/j.1440-1681.1999.03049.x. PubMed DOI
Law P.Y., Wong Y.H., Loh H.H. Molecular mechanisms and regulation of opioid receptor signaling. Annu. Rev. Pharmacol. Toxicol. 2000;40:389–430. doi: 10.1146/annurev.pharmtox.40.1.389. PubMed DOI
Law P.Y., Loh H.H., Wei L.N. Insights into the receptor transcription and signaling: Implications in opioid tolerance and dependence. Neuropharmacology. 2004;47(Suppl. S1):300–311. doi: 10.1016/j.neuropharm.2004.07.013. PubMed DOI
Stein C. Opioid Receptors. Annu. Rev. Med. 2016;67:433–451. doi: 10.1146/annurev-med-062613-093100. PubMed DOI
Feng Y., He X., Yang Y., Chao D., Lazarus L.H., Xia Y. Current research on opioid receptor function. Curr. Drug Targets. 2012;13:230–246. doi: 10.2174/138945012799201612. PubMed DOI PMC
Le Merrer J., Becker J.A., Befort K., Kieffer B.L. Reward processing by the opioid system in the brain. Physiol. Rev. 2009;89:1379–1412. doi: 10.1152/physrev.00005.2009. PubMed DOI PMC
Khan M.S., Boileau I., Kolla N., Mizrahi R. A systematic review of the role of the nociceptin receptor system in stress, cognition, and reward: Relevance to schizophrenia. Transl. Psychiatry. 2018;8:38. doi: 10.1038/s41398-017-0080-8. PubMed DOI PMC
Pellissier L.P., Pujol C.N., Becker J.A.J., Le Merrer J. Delta opioid receptors: Learning and motivation. Handb. Exp. Pharmacol. 2018;247:227–260. PubMed
Van Steenbergen H., Eikemo M., Leknes S. The role of the opioid system in decision making and cognitive control: A review. Cogn. Affect. Behav. Neurosci. 2019;19:435–458. doi: 10.3758/s13415-019-00710-6. PubMed DOI PMC
Raehal K.M., Bohn L.M. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology. 2011;60:58–65. doi: 10.1016/j.neuropharm.2010.08.003. PubMed DOI PMC
Lutz P.E., Kieffer B.L. Opioid receptors: Distinct roles in mood disorders. Trends Neurosci. 2012;36:195–206. doi: 10.1016/j.tins.2012.11.002. PubMed DOI PMC
Lutz P.E., Kieffer B.L. The multiple facets of opioid receptor function: Implications for addiction. Curr. Opin. Neurobiol. 2013;23:473–479. doi: 10.1016/j.conb.2013.02.005. PubMed DOI PMC
Nadal X., La Porta C., Andreea Bura S., Maldonado R. Involvement of the opioid and cannabinoid systems in pain control: New insights from knockout studies. Eur. J. Pharmacol. 2013;716:142–157. doi: 10.1016/j.ejphar.2013.01.077. PubMed DOI
Williams J.T., Ingram S.L., Henderson G., Chavkin C., von Zastrow M., Schulz S., Koch T., Evans C.J., Christie M.J. Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 2013;65:223–254. doi: 10.1124/pr.112.005942. PubMed DOI PMC
Varastehmoradi B., Wegener G., Sanchez C., Smith K.L. Opioid system modulation of cognitive affective bias: Implications for the treatment of mood disorders. Behav. Pharmacol. 2020;31:122–135. doi: 10.1097/FBP.0000000000000559. PubMed DOI
Avidor-Reiss T., Bayewitch M., Levy R., Matus-Leibovitch N., Nevo I., Vogel Z. Adenylylcyclase supersensitization in mu-opioid receptor-transfected Chinese hamster ovary cells following chronic opioid treatment. J. Biol. Chem. 1995;270:29732–29738. PubMed
Avidor-Reiss T., Nevo I., Levy R., Pfeuffer T., Vogel Z. Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma. J. Biol. Chem. 1996;271:21309–21315. doi: 10.1074/jbc.271.35.21309. PubMed DOI
Ammer H., Christ T.E. Identitity of adenylyl cyclase isoform determines the G protein mediating chronic opioid-induced adenylyl cyclase supersensitivity. J. Neurochem. 2002;83:818–827. doi: 10.1046/j.1471-4159.2002.01188.x. PubMed DOI
Varga E.V., Rubenzik M.K., Stropova D., Sugiyama M., Grife V., Hruby V.J., Rice K.C., Roeske W.R., Yamamura H.I. Converging protein kinase pathways mediate adenylyl cyclase superactivation upon chronic delta-opioid agonist treatment. J. Pharmacol. Exp. Ther. 2003;306:109–115. doi: 10.1124/jpet.103.049643. PubMed DOI
Schallmach E., Steiner D., Vogel Z. Adenylyl cyclase type II activity is regulated by two different mechanisms: Implications for acute and chronic opioid exposure. Neuropharmacology. 2006;50:998–1005. doi: 10.1016/j.neuropharm.2006.01.004. PubMed DOI
Chan P., Lutfy K. Molecular changes in opioid addiction: The role of adenylyl cyclase and cAMP/PKA system. Prog. Mol. Biol. Transl. Sci. 2016;137:203–227. PubMed
Bourova L., Vosahlikova M., Kagan D., Dlouha K., Novotny J., Svoboda P. Long-term adaptation to high doses of morphine causes desensitization of μ-OR and δ-OR-stimulated G protein response in forebrain cortex but does not decrease the amount of G-protein alpha subunits. Med. Sci. Monit. 2010;16:BR260–BR270. PubMed
Ujcikova H., Dlouha K., Roubalova L., Vosahlikova M., Kagan D., Svoboda P. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20 days after morphine withdrawal. Biochim. Biophys. Acta. 2011;1810:1220–1229. doi: 10.1016/j.bbagen.2011.09.017. PubMed DOI
Ujcikova H., Eckhardt A., Kagan D., Roubalova L., Svoboda P. Proteomic analysis of post-nuclear supernatant fraction and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine. Proteome Sci. 2014;12:11. doi: 10.1186/1477-5956-12-11. PubMed DOI PMC
Ujcikova H., Vosahlikova M., Roubalova L., Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug. J. Proteomics. 2016;145:11–23. doi: 10.1016/j.jprot.2016.02.019. PubMed DOI
Wybran J., Appelboom T., Famaey J.P., Govaerts A. Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J. Immunol. 1979;123:1068–1070. PubMed
Bryant H.U., Roudebush R.E. Suppressive effects of morphine pellet implants on in vivo parameters of immune function. J. Pharmacol. Exp. Ther. 1990;255:410–414. PubMed
Pacifici R., Minetti M., Zuccaro P., Pietraforte D. Morphine affects cytostatic activity of macrophages by the modulation of nitric oxide release. Int. J. Immunopharmacol. 1995;17:771–777. doi: 10.1016/0192-0561(95)00046-5. PubMed DOI
Sacerdote P., Manfredi B., Mantegazza P., Panerai A.E. Antinociceptive and immunosuppressive effects of opiate drugs: A structure-related activity study. Br. J. Pharmacol. 1997;121:834–840. doi: 10.1038/sj.bjp.0701138. PubMed DOI PMC
Gaveriaux-Ruff C., Matthes H.W., Peluso J., Kieffer B.L. Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc. Natl. Acad. Sci. USA. 1998;95:6326–6330. doi: 10.1073/pnas.95.11.6326. PubMed DOI PMC
Casellas A.M., Guardiola H., Renaud F.L. Inhibition by opioids of phagocytosis in peritoneal macrophages. Neuropeptides. 1991;18:35–40. doi: 10.1016/0143-4179(91)90161-B. PubMed DOI
Bussiere J.L., Adler M.W., Rogers T.J., Eisenstein T.K. Cytokine reversal of morphine-induced suppression of the antibody response. J. Pharmacol. Exp. Ther. 1993;264:591–597. PubMed
Eisenstein T.K., Meissler J.J., Jr., Rogers T.J., Geller E.B., Adler M.W. Mouse strain differences in immunosuppression by opioids in vitro. J. Pharmacol. Exp. Ther. 1995;275:1484–1489. PubMed
Lysle D.T., Coussons M.E., Watts V.J., Bennett E.H., Dykstra L.A. Morphine-induced alterations of immune status: Dose dependency, compartment specificity and antagonism by naltrexone. J. Pharmacol. Exp. Ther. 1993;265:1071–1078. PubMed
Roy S., Balasubramanian S., Sumandeep S., Charboneau R., Wang J., Melnyk D., Beilman G.J., Vatassery R., Barke R.A. Morphine directs T cells toward T(H2) differentiation. Surgery. 2001;130:304–309. doi: 10.1067/msy.2001.116033. PubMed DOI
Al-Hashimi M., Scott S.W.M., Thompson J.P., Lambert D.G. Opioids and immune modulation: More questions than answers. Br. J. Anaesth. 2013;111:80–88. doi: 10.1093/bja/aet153. PubMed DOI
Holan V., Zajicova A., Krulova M., Blahoutova V., Wilczek H. Augmented production of proinflammatory cytokines and accelerated allotransplantation reactions in heroin-treated mice. Clin. Exp. Immunol. 2003;132:40–45. doi: 10.1046/j.1365-2249.2003.02103.x. PubMed DOI PMC
Zajicova A., Wilczek H., Holan V. The alterations of immunological reactivity in heroin addicts and their normalization in patients maintained on methadone. Folia Biol. (Praha) 2004;50:24–28. PubMed
Chan Y.Y., Yang S.N., Lin J.C., Chang J.L., Lin J.G., Lo W.Y. Inflammatory response in heroin addicts undergoing methadone replacement therapy. Psychiatry Res. 2015;226:230–234. doi: 10.1016/j.psychres.2014.12.053. PubMed DOI
Borner C., Lanciotti S., Koch T., Hollt V., Kraus J. μ opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J. Neuroimmunol. 2013;263:35–42. doi: 10.1016/j.jneuroim.2013.07.012. PubMed DOI
Kraus J. Expression and functions of μ-opioid receptors and cannabinoid receptors type 1 in T lymphocytes. Ann. N. Y. Acad. Sci. 2012;1261:1–6. doi: 10.1111/j.1749-6632.2012.06524.x. PubMed DOI
Liang X., Liu R., Chen C., Ji F., Li T. Opioid system modulates the immune function: A review. Transl. Perioper. Pain Med. 2016;1:5–13. PubMed PMC
Eisenstein T.K. The role of opioid receptors in immune system function. Front. Immunol. 2019;10:2904. doi: 10.3389/fimmu.2019.02904. PubMed DOI PMC
Carr D.J., Bost K.L., Blalock J.E. The production of antibodies which recognize opiate receptors on murine leukocytes. Life Sci. 1988;42:2615–2624. doi: 10.1016/0024-3205(88)90331-1. PubMed DOI
Miller B. Delta opioid receptor expression is induced by concanavalin A in CD4+ T cells. J. Immunol. 1996;157:5324–5328. PubMed
Bidlack J.M., Abraham M.K. Mitogen-induced activation of mouse T cells increases kappa opioid receptor expression. Adv. Exp. Med. Biol. 2001;493:103–110. PubMed
Cechova K., Hlouskova M., Javorkova E., Roubalova L., Ujcikova H., Holan V., Svoboda P. Up-regulation of μ-, δ- and κ-opioid receptors in concanavalin A-stimulated rat spleen lymphocytes. J. Neuroimmunol. 2018;321:12–23. doi: 10.1016/j.jneuroim.2018.05.008. PubMed DOI
Sibinga N.E., Goldstein A. Opioid peptides and opioid receptors in cells of the immune system. Annu. Rev. Immunol. 1988;6:219–249. doi: 10.1146/annurev.iy.06.040188.001251. PubMed DOI
Bidlack J.M., Khimich M., Parkhill A.L., Sumagin S., Sun B., Tipton C.M. Opioid receptors and signaling on cells from the immune system. J. Neuroimmune Pharmacol. 2006;1:260–269. doi: 10.1007/s11481-006-9026-2. PubMed DOI
Sharp B.M. Multiple opioid receptors on immune cells modulate intracellular signaling. Brain Behav. Immun. 2006;20:9–14. doi: 10.1016/j.bbi.2005.02.002. PubMed DOI
Nguyen K., Miller B.C. CD28 costimulation induces delta opioid receptor expression during anti-CD3 activation of T cells. J. Immunol. 2002;168:4440–4445. doi: 10.4049/jimmunol.168.9.4440. PubMed DOI
Zhang L., Belkowski J.S., Briscoe T., Rogers T.J. Regulation of mu opioid receptor expression in developing T cells. J. Neuroimmune Pharmacol. 2012;7:835–842. doi: 10.1007/s11481-012-9396-6. PubMed DOI PMC
Williams J.P., Thompson J.P., McDonald J., Barnes T.A., Cote T., Rowbotham D.J., Lambert D.G. Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors. Anesth. Analg. 2007;105:998–1005. doi: 10.1213/01.ane.0000278865.11991.9d. PubMed DOI
Borner C., Stumm R., Hollt V., Kraus J. Comparative analysis of mu-opioid receptor expression in immune and neuronal cells. J. Neuroimmunol. 2007;188:56–63. doi: 10.1016/j.jneuroim.2007.05.007. PubMed DOI
Borner C., Kraus J., Bedini A., Schraven B., Hollt V. T-cell receptor/CD28-mediated activation of human T lymphocytes induces expression of functional mu-opioid receptors. Mol. Pharmacol. 2008;74:496–504. doi: 10.1124/mol.108.046029. PubMed DOI
Peluso J., LaForge K.S., Matthes H.W., Kreek M.J., Kieffer B.L., Gavériaux-Ruff C. Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J. Neuroimmunol. 1998;81:184–192. doi: 10.1016/S0165-5728(97)00178-1. PubMed DOI
Suzuki S., Miyagi T., Chuang T.K., Chuang L.F., Doi R.H., Chuang R.Y. Morphine upregulates mu opioid receptors of human and monkey lymphocytes. Biochem. Biophys. Res. Commun. 2000;279:621–628. doi: 10.1006/bbrc.2000.4006. PubMed DOI
Suzuki S., Chuang L.F., Doi R.H., Bidlack J.M., Chuang R.Y. Kappa-opioid receptors on lymphocytes of a human lymphocytic cell line: Morphine-induced up-regulation as evidenced by competitive RT-PCR and indirect immunofluorescence. Int. Immunopharmacol. 2001;1:1733–1742. doi: 10.1016/S1567-5769(01)00083-2. PubMed DOI
Sedqi M., Roy S., Ramakrishnan S., Elde R., Loh H.H. Complementary DNA cloning of a mu-opioid receptor from rat peritoneal macrophages. Biochem. Biophys. Res. Commun. 1995;209:563–574. doi: 10.1006/bbrc.1995.1538. PubMed DOI
Chuang T.K., Killam Jr K.F., Chuang L.F., Kung H.F., Sheng W.S., Chao C.C., Yu L., Chuang R.Y. Mu opioid receptor gene expression in immune cells. Biochem. Biophys. Res. Commun. 1995;216:922–930. doi: 10.1006/bbrc.1995.2709. PubMed DOI
Toskulkao T., Pornchai R., Akkarapatumwong V., Vatanatunyakum S., Govitrapong P. Alteration of lymphocyte opioid receptors in methadone maintenance subjects. Neurochem. Int. 2010;56:285–290. doi: 10.1016/j.neuint.2009.10.013. PubMed DOI
Campana G., Sarti D., Spampinato S., Raffaeli W. Long-term intrathecal morphine and bupivacaine upregulate MOR gene expression in lymphocytes. Int. Immunopharmacol. 2010;10:1149–1152. doi: 10.1016/j.intimp.2010.06.016. PubMed DOI
Raffaeli W., Malafoglia V., Bonci A., Tenti M., Ilari S., Gremigni P., Iannuccelli C., Gioia C., Di Franco M., Mollace V., et al. Identification of MOR-positive B cell as possible innovative biomarker (Mu lympho-marker) for chronic pain diagnosis in patients with fibromyalgia and osteoarthritis diseases. Int. J. Mol. Sci. 2020;21:1499. doi: 10.3390/ijms21041499. PubMed DOI PMC
Maher D.P., Walia D., Heller N.M. Suppression of human natural killer cells by different classes of opioids. Anesth. Analg. 2019;128:1013–1021. doi: 10.1213/ANE.0000000000004058. PubMed DOI PMC
Gaveriaux C., Peluso J., Simonin F., Laforet J., Kieffer B. Identification of kappa- and delta-opioid receptor transcripts in immune cells. FEBS Lett. 1995;369:272–276. doi: 10.1016/0014-5793(95)00766-3. PubMed DOI
Sharp B.M., Shahabi N., McKean D., Li M.D., McAllen K. Detection of basal levels and induction of delta opioid receptor mRNA in murine splenocytes. J. Neuroimmunol. 1997;78:198–202. doi: 10.1016/S0165-5728(97)00101-X. PubMed DOI
Li M.D., McAllen K., Sharp B.M. Regulation of delta opioid receptor expression by anti-CD3-epsilon, PMA, and ionomycin in murine splenocytes and T cells. J. Leukoc. Biol. 1999;65:707–714. doi: 10.1002/jlb.65.5.707. PubMed DOI
Chuang L.F., Chuang T.K., Killam Jr K.F., Chuang A.J., Kung H.F., Yu L., Chuang R.Y. Delta opioid receptor gene expression in lymphocytes. Biochem. Biophys. Res. Commun. 1994;202:1291–1299. doi: 10.1006/bbrc.1994.2071. PubMed DOI
Wick M.J., Minnerath S.R., Roy S., Ramakrishnan S., Loh H.H. Differential expression of opioid receptor genes in human lymphoid cell lines and peripheral blood lymphocytes. J. Neuroimmunol. 1996;64:29–36. doi: 10.1016/0165-5728(95)00144-1. PubMed DOI
Belkowski S.M., Zhu J., Liu-Chen L.Y., Eisenstein T.K., Adler M.W., Rogers T.J. Sequence of kappa-opioid receptor cDNA in the R1.1 thymoma cell line. J. Neuroimmunol. 1995;62:113–117. doi: 10.1016/0165-5728(95)00116-J. PubMed DOI
Alicea C., Belkowski S.M., Sliker J.K., Zhu J., Liu-Chen L.Y., Eisenstein T.K., Adler M.W., Rogers T.J. Characterization of kappa-opioid receptor transcripts expressed by T cells and macrophages. J. Neuroimmunol. 1998;91:55–62. doi: 10.1016/S0165-5728(98)00151-9. PubMed DOI
Ignatowski T.A., Bidlack J.M. Differential kappa-opioid receptor expression on mouse lymphocytes at varying stages of maturation and on mouse macrophages after selective elicitation. J. Pharmacol. Exp. Ther. 1999;290:863–870. PubMed
Karaji A.G., Khansari N., Ansary B., Dehpour A.R. Detection of opioid receptors on murine lymphocytes by indirect immunofluorescence: Mature normal and tumor bearing mice lymphocytes. Int. Immunopharmacol. 2005;5:1019–1027. doi: 10.1016/j.intimp.2005.01.012. PubMed DOI
Belkowski S.M., Zhu J., Liu-Chen L.Y., Eisenstein T.K., Adler M.W., Rogers T.J. Detection of kappa-opioid receptor mRNA in immature T cells. Adv. Exp. Med. Biol. 1995;373:11–16. PubMed
Ignatowski T.A., Bidlack J.M. Detection of kappa opioid receptors on mouse thymocyte phenotypic subpopulations as assessed by flow cytometry. J. Pharmacol. Exp. Ther. 1998;284:298–306. PubMed
Chuang L.F., Chuang T.K., Killam Jr K.F., Qiu Q., Wang X.R., Lin J.J., Kung H.F., Sheng W., Chao C., Yu L., et al. Expression of kappa opioid receptors in human and monkey lymphocytes. Biochem. Biophys. Res. Commun. 1995;209:1003–1010. doi: 10.1006/bbrc.1995.1597. PubMed DOI
Shahkarami K., Vousooghi N., Golab F., Mohsenzadeh A., Baharvand P., Sadat-Shirazi M.S., Babhadi-Ashar N., Shakeri A., Zarrindast M.R. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend. 2019;205:107638. doi: 10.1016/j.drugalcdep.2019.107638. PubMed DOI
Gunji N., Nagashima M., Asano G., Yoshino S. Expression of kappa-opioid receptor mRNA in human peripheral blood lymphocytes and the relationship between its expression and the inflammatory changes in rheumatoid arthritis. Rheumatol. Int. 2000;19:95–100. doi: 10.1007/s002960050110. PubMed DOI
Zhang L., Stüber F., Lippuner C., Schiff M., Stamer U.M. ERK and p38 contribute to the regulation of nociceptin and the nociceptin receptor in human peripheral blood leukocytes. Mol. Pain. 2019;15:1744806919828921. doi: 10.1177/1744806919828921. PubMed DOI PMC
Serhan C.N., Fierro I.M., Chiang N., Pouliot M. Cutting edge: Nociceptin stimulates neutrophil chemotaxis and recruitment: Inhibition by aspirin-triggered-15-epi-lipoxin A4. J. Immunol. 2001;166:3650–3654. doi: 10.4049/jimmunol.166.6.3650. PubMed DOI
Mazzone A., Mazzucchelli I., Fossati G., Gritti D., Fea M., Ricevuti G. Granulocyte defects and opioid receptors in chronic exposure to heroin or methadone in humans. Int. J. Immunopharmacol. 1994;16:959–967. doi: 10.1016/0192-0561(94)90049-3. PubMed DOI
Caldiroli E., Leoni O., Cattaneo S., Rasini E., Marino V., Tosetto C., Mazzone A., Fietta A.M., Lecchini S., Frigo G.M. Neutrophil function and opioid receptor expression on leucocytes during chronic naltrexone treatment in humans. Pharmacol. Res. 1999;40:153–158. doi: 10.1006/phrs.1999.0488. PubMed DOI
Beck M., Mirmohammadsadegh A., Franz B., Blanke J., Hengge U.R. Opioid receptors on white blood cells: Effect of HIV infection and methadone treatment. Pain. 2002;98:187–194. doi: 10.1016/S0304-3959(02)00044-1. PubMed DOI
Vousooghi N., Goodarzi A., Roushanzamir F., Sedaghati T., Zarrindast M.R., Noori-Daloii M.R. Expression of mu opioid receptor splice variants mRNA in human blood lymphocytes: A peripheral marker for opioid addiction studies. Int. Immunopharmacol. 2009;9:1016–1020. doi: 10.1016/j.intimp.2009.02.010. PubMed DOI
Shen H., Sprott H., Aeschlimann A., Gay R.E., Michel B.A., Gay S., Sprott H. Analgesic action of acetaminophen in symptomatic osteoarthritis of the knee. Rheumatology. 2006;45:765–770. doi: 10.1093/rheumatology/kei253. PubMed DOI
Malafoglia V., Celi M., Muscoli C., Ilari S., Lauro F., Giancotti L.A., Morabito C., Feola M., Tarantino U., Raffaeli W. Lymphocyte opioid receptors as innovative biomarkers of osteoarthritic pain, for the assessment and risk management of opioid tailored therapy, before hip surgery, to prevent chronic pain and opioid tolerance/addiction development: OpMarkArt (Opioids-Markers-Arthroprosthesis) study protocol for a randomized controlled trial. Trials. 2017;18:605. PubMed PMC
Dothel G., Chang L., Shih W., Barbaro M.R., Cremon C., Stanghellini V., De Ponti F., Mayer E.A., Barbara G., Sternini C. µ-opioid receptor, β-endorphin, and cannabinoid receptor-2 are increased in the colonic mucosa of irritable bowel syndrome patients. Neurogastroenterol. Motil. 2019;31:e13688. doi: 10.1111/nmo.13688. PubMed DOI PMC
Stamer U.M., Book M., Comos C., Zhang L., Nauck F., Stuber F. Expression of the nociceptin precursor and nociceptin receptor is modulated in cancer and septic patients. Br. J. Anaesth. 2011;106:566–572. doi: 10.1093/bja/aer007. PubMed DOI
Gavioli E.C., de Medeiros I.U., Monteiro M.C., Calo G., Romao P.R. Nociceptin/orphanin FQ-NOP receptor system in inflammatory and immune-mediated diseases. Vitam. Horm. 2015;97:241–266. PubMed
Steidl U., Bork S., Schaub S., Selbach O., Seres J., Aivado M., Schroeder T., Rohr U.P., Fenk R., Kliszewski S., et al. Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood. 2004;104:81–88. doi: 10.1182/blood-2004-01-0373. PubMed DOI
Liu J., Chen W., Meng J., Lu C., Wang E., Shan F. Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin (MENK) Cancer Immunol. Immunother. 2012;61:1699–1711. doi: 10.1007/s00262-012-1221-9. PubMed DOI PMC
Abdyazdani N., Nourazarian A., Nozad Charoudeh H., Kazemi M., Feizy N., Akbarzade M., Mehdizadeh A., Rezaie J., Rahbarghazi R. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci. Lett. 2017;636:205–212. doi: 10.1016/j.neulet.2016.11.025. PubMed DOI
Willner D., Cohen-Yeshurun A., Avidan A., Ozersky V., Shohami E., Leker R.R. Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors. PLoS ONE. 2014;9:e103043. doi: 10.1371/journal.pone.0103043. PubMed DOI PMC
Dholakiya S.L., Aliberti A., Barile F.A. Morphine sulfate concomitantly decreases neuronal differentiation and opioid receptor expression in mouse embryonic stem cells. Toxicol. Lett. 2016;247:45–55. doi: 10.1016/j.toxlet.2016.01.010. PubMed DOI
Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. 2008;180:2581–2587. doi: 10.4049/jimmunol.180.4.2581. PubMed DOI
Holan V., Hermankova B., Bohacova P., Kossl J., Chudickova M., Hajkova M., Krulova M., Zajicova A., Javorkova E. Distinct immunoregulatory mechanisms in mesenchymal stem cells: Role of the cytokine environment. Stem Cell Rev. Rep. 2016;12:654–663. doi: 10.1007/s12015-016-9688-y. PubMed DOI
Holan V., Cechova K., Zajicova A., Kossl J., Hermankova B., Bohacova P., Hajkova M., Krulova M., Svoboda P., Javorkova E. The impact of morphine on the characteristics and function properties of human mesenchymal stem cells. Stem Cell Rev. Rep. 2018;14:801–811. doi: 10.1007/s12015-018-9843-8. PubMed DOI
Holan V., Echalar B., Palacka K., Kossl J., Bohacova P., Krulova M., Brejchova J., Svoboda P., Zajicova A. The altered migration and distribution of systemically administered mesenchymal stem cells in morphine-treated recipients. Unpublished. PubMed
Rook J.M., McCarson K.E. Delay of cutaneous wound closure by morphine via local blockade of peripheral tachykinin release. Biochem. Pharmacol. 2007;74:752–757. doi: 10.1016/j.bcp.2007.06.005. PubMed DOI PMC
Chrastil J., Sampson C., Jones K.B., Higgins T.F. Postoperative opioid administration inhibits bone healing in an animal model. Clin. Orthop. Relat. Res. 2013;471:4076–4081. doi: 10.1007/s11999-013-3232-z. PubMed DOI PMC
Barlass U., Dutta R., Cheema H., George J., Sareen A., Dixit A., Yuan Z., Giri B., Meng J., Banerjee S., et al. Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut. 2018;67:600–602. doi: 10.1136/gutjnl-2017-313717. PubMed DOI