The Dose-Dependent Effects of Multifunctional Enkephalin Analogs on the Protein Composition of Rat Spleen Lymphocytes, Cortex, and Hippocampus; Comparison with Changes Induced by Morphine

. 2022 Aug 14 ; 10 (8) : . [epub] 20220814

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36009516

Grantová podpora
LTAUSA18110 the Ministry of Education of the Czech Republic
RVO:67985823 the Institute of Physiology of the Czech Academy of Sciences

Odkazy

PubMed 36009516
PubMed Central PMC9406115
DOI 10.3390/biomedicines10081969
PII: biomedicines10081969
Knihovny.cz E-zdroje

This work aimed to test the effect of 7-day exposure of rats to multifunctional enkephalin analogs LYS739 and LYS744 at doses of 3 mg/kg and 10 mg/kg on the protein composition of rat spleen lymphocytes, brain cortex, and hippocampus. Alterations of proteome induced by LYS739 and LYS744 were compared with those elicited by morphine. The changes in rat proteome profiles were analyzed by label-free quantification (MaxLFQ). Proteomic analysis indicated that the treatment with 3 mg/kg of LYS744 caused significant alterations in protein expression levels in spleen lymphocytes (45), rat brain cortex (31), and hippocampus (42). The identified proteins were primarily involved in RNA processing and the regulation of cytoskeletal dynamics. In spleen lymphocytes, the administration of the higher 10 mg/kg dose of both enkephalin analogs caused major, extensive modifications in protein expression levels: LYS739 (119) and LYS744 (182). Among these changes, the number of proteins associated with immune responses and apoptotic processes was increased. LYS739 treatment resulted in the highest number of alterations in the rat brain cortex (152) and hippocampus (45). The altered proteins were functionally related to the regulation of transcription and cytoskeletal reorganization, which plays an essential role in neuronal plasticity. Administration with LYS744 did not increase the number of altered proteins in the brain cortex (26) and hippocampus (26). Our findings demonstrate that the effect of κ-OR full antagonism of LYS744 is opposite in the central nervous system and the peripheral region (spleen lymphocytes).

Zobrazit více v PubMed

Navratilova E., Porreca F. Substance P and inflammatory pain: Getting it wrong and right simultaneously. Neuron. 2019;101:353–355. doi: 10.1016/j.neuron.2019.01.034. PubMed DOI

Carter B.D., Medzihradsky F. Go mediates the coupling of the mu opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc. Natl. Acad. Sci. USA. 1993;90:4062–4066. doi: 10.1073/pnas.90.9.4062. PubMed DOI PMC

Waldhoer M., Bartlett S.E., Whistler J.R. Opioid receptors. Annu. Rev. Biochem. 2004;73:953–990. doi: 10.1146/annurev.biochem.73.011303.073940. PubMed DOI

Bourova L., Vosahlikova M., Kagan D., Dlouha K., Novotny J., Svoboda P. Long-term adaptation to high doses of morphine causes desensitization of µ-OR- and δ-OR-stimulated G-protein response in forebrain cortex but does not decrease the amount of G-protein alpha subunit. Med. Sci. Monit. 2010;16:260–270. PubMed

Ujcikova H., Dlouha K., Roubalova L., Vosahlikova M., Kagan D., Svoboda P. Up-regulation of adenylylcyclases I and II induced by long-term adaptation of rats to morphine fades away 20 days after morphine withdrawal. Biochim. Biophys. Acta. 2011;1810:1220–1229. doi: 10.1016/j.bbagen.2011.09.017. PubMed DOI

Ujcikova H., Brejchova J., Vosahlikova M., Kagan D., Dlouha K., Sykora J., Merta L., Drastichova Z., Novotny J., Ostasov P., et al. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: The role of plasma membrane structure. Physiol. Res. 2014;63:547–559. PubMed

Ujcikova H., Robles D., Yue X., Svoboda P., Lee Y.S., Navratilova E. Time-dependent changes in protein composition of medial prefrontal cortex in rats with neuropathic pain. Int. J. Mol. Sci. 2022;23:955. doi: 10.3390/ijms23020955. PubMed DOI PMC

Zolezzi D.M., Alonso-Valerdi L.M., Ibarra-Zarate D. Chronic neuropathic pain is more than a perception: Systems and methods for an integral characterization. Neurosci. Biobehav. Rev. 2022;136:104599. doi: 10.1016/j.neubiorev.2022.104599. PubMed DOI

Anand J.P., Montgomery D. Multifunctional opioid ligands. Handb. Exp. Pharmacol. 2018;247:21–51. PubMed

Lee Y.S., Remesic M., Ramos-Colon C., Wu Z., LaVigne J., Molnar G., Tymecka D., Misicka A., Streicher J.M., Hruby V.J., et al. Multifunctional enkephalin analogs with a new biological profile: MOR/DOR agonism and KOR antagonism. Biomedicines. 2021;9:625. doi: 10.3390/biomedicines9060625. PubMed DOI PMC

Lee Y.S., Petrov R., Park C.K., Ma S.W., Davis P., Lai J., Porreca F., Vardanyan R., Hruby V.J. Development of novel enkephalin analogues which have enhanced opioid activities at both μ and δ opioid receptors. J. Med. Chem. 2007;50:5528–5532. doi: 10.1021/jm061465o. PubMed DOI PMC

Lee Y.S., Kulkarani V., Cowell S.M., Ma S.W., Davis P., Hanlon K.E., Vanderah T.W., Lai J., Porreca F., Vardanyan R., et al. Development of potent μ and δ opioid agonists with high lipophilicity. J. Med. Chem. 2011;54:382–386. doi: 10.1021/jm100982d. PubMed DOI PMC

Ujcikova H., Vosahlikova M., Roubalova L., Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug. J. Proteom. 2016;145:11–23. doi: 10.1016/j.jprot.2016.02.019. PubMed DOI

Ujcikova H., Cechova K., Jagr M., Roubalova L., Vosahlikova M., Svoboda P. Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal. PLoS ONE. 2020;15:e0231721. doi: 10.1371/journal.pone.0231721. PubMed DOI PMC

Ujcikova H., Hejnova L., Eckhardt A., Roubalova L., Novotny J., Svoboda P. Impact of three-month morphine withdrawal on rat brain cortex, hippocampus, striatum and cerebellum: Proteomic and phosphoproteomic studies. Neurochem. Int. 2021;144:104975. doi: 10.1016/j.neuint.2021.104975. PubMed DOI

Ujcikova H., Eckhardt A., Hejnova L., Novotny J., Svoboda P. Alterations in the proteome and phosphoproteome profiles of rat hippocampus after six months of morphine withdrawal: Comparison with the forebrain cortex. Biomedicines. 2022;10:80. doi: 10.3390/biomedicines10010080. PubMed DOI PMC

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Moll. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Ujcikova H., Eckhardt A., Kagan D., Roubalova L., Svoboda P. Proteomic analysis of post-nuclear supernatant fraction and Percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine. Proteome Sci. 2014;12:11. doi: 10.1186/1477-5956-12-11. PubMed DOI PMC

Cechova K., Hlouskova M., Javorkova E., Roubalova L., Ujcikova H., Holan V., Svoboda P. Up-regulation of μ-, δ- and κ-opioid receptors in concanavalin A-stimulated rat spleen lymphocytes. J. Neuroimmunol. 2018;321:12–23. doi: 10.1016/j.jneuroim.2018.05.008. PubMed DOI

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Nestler E.J. Transcriptional mechanisms of drug addiction. Clin. Psychopharmacol. Neurosci. 2012;10:136–143. doi: 10.9758/cpn.2012.10.3.136. PubMed DOI PMC

Alghamdi B.S., Alshehri F.S. Melatonin blocks morphine-induced place preference: Involvement of GLT-1, NF-κB, BDNF, and CREB in the nucleus accumbens. Front. Behav. Neurosci. 2021;15:762297. doi: 10.3389/fnbeh.2021.762297. PubMed DOI PMC

Datta A., Brosh R.M., Jr. New insights into DNA helicases as druggable targets for cancer therapy. Front. Mol. Biosci. 2018;5:59. doi: 10.3389/fmolb.2018.00059. PubMed DOI PMC

Dhar S., Datta A., Brosh R.M., Jr. DNA helicases and their roles in cancer. DNA Repair. 2020;96:102994. doi: 10.1016/j.dnarep.2020.102994. PubMed DOI

Lee J.S., Lee N.R., Kashif A., Yang S.J., Nam A.R., Song I.C., Gong S.J., Hong M.H., Kim G., Seok P.R., et al. S100A8 and S100A9 promote apoptosis of chronic eosinophilic leukemia cells. Front. Immunol. 2020;11:1258. doi: 10.3389/fimmu.2020.01258. PubMed DOI PMC

Boronat M.A., García-Fuster M.J., García-Sevilla J.A. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br. J. Pharmacol. 2001;134:1263–1270. doi: 10.1038/sj.bjp.0704364. PubMed DOI PMC

Morón J.A., Abul-Husn N.S., Rozenfeld R., Dolios G., Wang R., Devi L.A. Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins. Mol. Cell. Proteom. 2007;6:29–42. doi: 10.1074/mcp.M600184-MCP200. PubMed DOI

Kutlu M.G., Gould T.J. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: Contributions to development and maintenance of addiction. Learn. Mem. 2016;23:515–533. doi: 10.1101/lm.042192.116. PubMed DOI PMC

Mattei V., Martellucci S., Santilli F., Manganelli V., Garofalo T., Candelise N., Caruso A., Sorice M., Scaccianoce S., Misasi R. Morphine withdrawal modifies prion protein expression in rat hippocampus. PLoS ONE. 2017;12:e0169571. doi: 10.1371/journal.pone.0169571. PubMed DOI PMC

Wybran J., Appelboom T., Famaey J.P., Govaerts A. Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J. Immunol. 1979;123:1068–1070. PubMed

Eisenstein T.K. The role of opioid receptors in immune system function. Front. Immunol. 2019;10:2904. doi: 10.3389/fimmu.2019.02904. PubMed DOI PMC

Brejchova J., Holan V., Svoboda P. Expression of opioid receptors in cells of the immune system. Int. J. Mol. Sci. 2021;22:315. doi: 10.3390/ijms22010315. PubMed DOI PMC

Bustelo X.R. Vav family exchange factors: An integrated regulatory and functional view. Small GTPases. 2014;5:9. doi: 10.4161/21541248.2014.973757. PubMed DOI PMC

Rodríguez-Fdez S., Bustelo X.R. The Vav GEF family: An evolutionary and functional perspective. Cells. 2019;8:465. doi: 10.3390/cells8050465. PubMed DOI PMC

Wu X., Xie S., Wang L., Fan P., Ge S., Xie X.Q., Wu W. A computational strategy for finding novel targets and therapeutic compounds for opioid dependence. PLoS ONE. 2018;13:e0207027. doi: 10.1371/journal.pone.0207027. PubMed DOI PMC

Nestler E.J. Transcriptional mechanisms of addiction: Role of ΔFosB. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:3245–3255. doi: 10.1098/rstb.2008.0067. PubMed DOI PMC

Stockton S.D., Jr., Gomes I., Liu T., Moraje C., Hipólito L., Jones M.R., Ma’ayan A., Morón J.A., Li H., Devi L.A. Morphine regulated synaptic networks revealed by integrated proteomics and network analysis. Mol. Cell. Proteom. 2015;14:2564–2576. doi: 10.1074/mcp.M115.047977. PubMed DOI PMC

Toleikis Z., Ziaunys M., Baranauskiene L., Petrauskas V., Jaudzems K., Smirnovas V. S100A9 alters the pathway of alpha-synuclein amyloid aggregation. Int. J. Mol. Sci. 2021;22:7972. doi: 10.3390/ijms22157972. PubMed DOI PMC

Wankhede N.L., Kale M.B., Upaganlawar A.B., Taksande B.G., Umekar M.J., Behl T., Abdellatif A.A.H., Bhaskaran P.M., Dachani S.R., Seghal A., et al. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed. Pharmacother. 2022;147:112647. doi: 10.1016/j.biopha.2022.112647. PubMed DOI

Okuyama Y., Jin H., Kokubun H., Aoe T. Pharmacological chaperones attenuate the development of opioid tolerance. Int. J. Mol. Sci. 2020;21:7536. doi: 10.3390/ijms21207536. PubMed DOI PMC

Civciristov S., Huang C., Liu B., Marquez E.A., Gondin A.B., Schittenhelm R.B., Ellisdon A.M., Canals M., Halls M.L. Ligand-dependent spatiotemporal signaling profiles of the µ-opioid receptor are controlled by distinct protein-interaction networks. J. Biol. Chem. 2019;294:16198–16213. doi: 10.1074/jbc.RA119.008685. PubMed DOI PMC

Liaw W.J., Tsao C.M., Huang G.S., Wu C.C., Ho S.T., Wang J.J., Tao Y.X., Shui H.A. Phosphoproteomics and bioinformatics analyses of spinal cord proteins in rats with morphine tolerance. PLoS ONE. 2014;9:e83817. doi: 10.1371/journal.pone.0083817. PubMed DOI PMC

Rothenfluh A., Cowan C.W. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’? Curr. Opin. Neurobiol. 2013;23:507–512. doi: 10.1016/j.conb.2013.01.027. PubMed DOI PMC

Drastichova Z., Hejnova L., Moravcova R., Novotny J. Proteomic analysis unveils expressional changes in cytoskeleton- and synaptic plasticity-associated proteins in rat brain six months after withdrawal from morphine. Life. 2021;11:683. doi: 10.3390/life11070683. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...