Time-Dependent Changes in Protein Composition of Medial Prefrontal Cortex in Rats with Neuropathic Pain

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35055141

Grantová podpora
R01DA041809 NIH HHS - United States
CA023074 NIH HHS - United States
CZ.02.2.69/0.0/0.0/16_027/0008013 European Structural and Investment Funds

Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.

Zobrazit více v PubMed

Emery E.C., Luiz A.P., Wood J.N. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin. Ther. Targets. 2016;20:975–983. doi: 10.1517/14728222.2016.1162295. PubMed DOI PMC

Mapplebeck J.C.S., Lorenzo L.E., Lee K.Y., Gauthier C., Muley M.M., De Koninck Y., Prescott S.A., Salter M.W. Chloride Dysregulation through Downregulation of KCC2 Mediates Neuropathic Pain in Both Sexes. Cell Rep. 2019;28:590–596.e4. doi: 10.1016/j.celrep.2019.06.059. PubMed DOI

Coull J.A., Boudreau D., Bachand K., Prescott S.A., Nault F., Sik A., De Koninck P., De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424:938–942. doi: 10.1038/nature01868. PubMed DOI

Farmer M.A., Baliki M.N., Apkarian A.V. A dynamic network perspective of chronic pain. Neurosci. Lett. 2012;520:197–203. doi: 10.1016/j.neulet.2012.05.001. PubMed DOI PMC

Baliki M.N., Petre B., Torbey S., Herrmann K.M., Huang L., Schnitzer T.J., Fields H.L., Apkarian A.V. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 2012;15:1117–1119. doi: 10.1038/nn.3153. PubMed DOI PMC

Apkarian A.V., Baliki M.N., Farmer M.A. Predicting transition to chronic pain. Curr. Opin. Neurol. 2013;26:360–367. doi: 10.1097/WCO.0b013e32836336ad. PubMed DOI PMC

Tracey I., Bushnell M.C. How neuroimaging studies have challenged us to rethink: Is chronic pain a disease? J. Pain Off. J. Am. Pain Soc. 2009;10:1113–1120. doi: 10.1016/j.jpain.2009.09.001. PubMed DOI

Harris R.E., Napadow V., Huggins J.P., Pauer L., Kim J., Hampson J., Sundgren P.C., Foerster B., Petrou M., Schmidt-Wilcke T., et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119:1453–1464. doi: 10.1097/ALN.0000000000000017. PubMed DOI

Iannetti G.D., Zambreanu L., Wise R.G., Buchanan T.J., Huggins J.P., Smart T.S., Vennart W., Tracey I. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc. Natl. Acad. Sci. USA. 2005;102:18195–18200. doi: 10.1073/pnas.0506624102. PubMed DOI PMC

Oertel B.G., Preibisch C., Wallenhorst T., Hummel T., Geisslinger G., Lanfermann H., Lotsch J. Differential opioid action on sensory and affective cerebral pain processing. Clin. Pharmacol. Ther. 2008;83:577–588. doi: 10.1038/sj.clpt.6100441. PubMed DOI

Rauck R., Coffey R.J., Schultz D.M., Wallace M.S., Webster L.R., McCarville S.E., Grigsby E.J., Page L.M. Intrathecal gabapentin to treat chronic intractable noncancer pain. Anesthesiology. 2013;119:675–686. doi: 10.1097/ALN.0b013e3182a10fbf. PubMed DOI

Hama A., Natsume T., Ogawa S.Y., Awaga Y., Hayashi I., Matsuda A., Takamatsu H. Pain-Related Behavior and Brain Activation in a Cynomolgus Macaque Model of Postoperative Pain. CNS Neurol. Disord. Drug Targets. 2018;17:348–360. doi: 10.2174/1871527317666180515121350. PubMed DOI

Bannister K., Qu C., Navratilova E., Oyarzo J., Xie J.Y., King T., Dickenson A.H., Porreca F. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain. 2017;158:2386–2395. doi: 10.1097/j.pain.0000000000001040. PubMed DOI PMC

Navratilova E., Xie J.Y., Meske D., Qu C., Morimura K., Okun A., Arakawa N., Ossipov M., Fields H.L., Porreca F. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J. Neurosci. 2015;35:7264–7271. doi: 10.1523/JNEUROSCI.3862-14.2015. PubMed DOI PMC

Johansen J.P., Fields H.L., Manning B.H. The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA. 2001;98:8077–8082. doi: 10.1073/pnas.141218998. PubMed DOI PMC

Bushnell M.C., Ceko M., Low L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013;14:502–511. doi: 10.1038/nrn3516. PubMed DOI PMC

Villemure C., Bushnell M.C. Mood influences supraspinal pain processing separately from attention. J. Neurosci. Off. J. Soc. Neurosci. 2009;29:705–715. doi: 10.1523/JNEUROSCI.3822-08.2009. PubMed DOI PMC

Wager T.D., Rilling J.K., Smith E.E., Sokolik A., Casey K.L., Davidson R.J., Kosslyn S.M., Rose R.M., Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303:1162–1167. doi: 10.1126/science.1093065. PubMed DOI

Hsieh J.C., Belfrage M., Stone-Elander S., Hansson P., Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63:225–236. doi: 10.1016/0304-3959(95)00048-W. PubMed DOI

Willoch F., Gamringer U., Medele R., Steude U., Tolle T.R. Analgesia by electrostimulation of the trigeminal ganglion in patients with trigeminopathic pain: A PET activation study. Pain. 2003;103:119–130. doi: 10.1016/s0304-3959(02)00423-2. PubMed DOI

Becerra L., Navratilova E., Porreca F., Borsook D. Analogous Responses in the Nucleus Accumbens and Cingulate Cortex to Pain Onset (Aversion) and Offset (Relief) in Rats and Humans. J. Neurophysiol. 2013;110:1221–1226. doi: 10.1152/jn.00284.2013. PubMed DOI PMC

Zhang Z., Gadotti V.M., Chen L., Souza I.A., Stemkowski P.L., Zamponi G.W. Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. Cell Rep. 2015;12:752–759. doi: 10.1016/j.celrep.2015.07.001. PubMed DOI

Huang J., Gadotti V.M., Chen L., Souza I.A., Huang S., Wang D., Ramakrishnan C., Deisseroth K., Zhang Z., Zamponi G.W. A neuronal circuit for activating descending modulation of neuropathic pain. Nat. Neurosci. 2019;22:1659–1668. doi: 10.1038/s41593-019-0481-5. PubMed DOI

Price T.J., Ray P.R. Recent advances toward understanding the mysteries of the acute to chronic pain transition. Curr. Opin. Physiol. 2019;11:42–50. doi: 10.1016/j.cophys.2019.05.015. PubMed DOI PMC

Zubieta J.K., Stohler C.S. Neurobiological mechanisms of placebo responses. Ann. N. Y. Acad. Sci. 2009;1156:198–210. doi: 10.1111/j.1749-6632.2009.04424.x. PubMed DOI PMC

Johansen J.P., Fields H.L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 2004;7:398–403. doi: 10.1038/nn1207. PubMed DOI

LaGraize S.C., Labuda C.J., Rutledge M.A., Jackson R.L., Fuchs P.N. Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp. Neurol. 2004;188:139–148. doi: 10.1016/j.expneurol.2004.04.003. PubMed DOI

Qu C., King T., Okun A., Lai J., Fields H.L., Porreca F. Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain. 2011;152:1641–1648. doi: 10.1016/j.pain.2011.03.002. PubMed DOI PMC

Hashmi J.A., Baliki M.N., Huang L., Baria A.T., Torbey S., Hermann K.M., Schnitzer T.J., Apkarian A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Pt 9Brain. 2013;136:2751–2768. doi: 10.1093/brain/awt211. PubMed DOI PMC

Seminowicz D.A., Laferriere A.L., Millecamps M., Yu J.S.C., Coderre T.J., Bushnell M.C. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. NeuroImage. 2009;47:1007–1014. doi: 10.1016/j.neuroimage.2009.05.068. PubMed DOI PMC

Ajit S.K., Ramineni S., Edris W., Hunt R.A., Hum W.T., Hepler J.R., Young K.H. RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Cell. Signal. 2007;19:723–730. doi: 10.1016/j.cellsig.2006.09.008. PubMed DOI

Sanchez-Blazquez P., Rodriguez-Munoz M., Montero C., de la Torre-Madrid E., Garzon J. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Neuropharmacology. 2008;54:319–330. doi: 10.1016/j.neuropharm.2007.10.002. PubMed DOI

Sui P., Watanabe H., Ossipov M.H., Bakalkin G., Artemenko K., Bergquist J. Proteomics of neuropathic pain: Proteins and signaling pathways affected in a rat model. J. Proteome Res. 2014;13:3957–3965. doi: 10.1021/pr500241q. PubMed DOI

Milligan G., Kostenis E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol. 2006;147((Suppl 1)):S46–S55. doi: 10.1038/sj.bjp.0706405. PubMed DOI PMC

Jiang M., Bajpayee N.S. Molecular mechanisms of go signaling. Neurosignals. 2009;17:23–41. doi: 10.1159/000186688. PubMed DOI PMC

Singh O.V., Yaster M., Xu J.T., Guan Y., Guan X., Dharmarajan A.M., Raja S.N., Zeitlin P.L., Tao Y.X. Proteome of synaptosome-associated proteins in spinal cord dorsal horn after peripheral nerve injury. Proteomics. 2009;9:1241–1253. doi: 10.1002/pmic.200800636. PubMed DOI PMC

Alzate O., Hussain S.R., Goettl V.M., Tewari A.K., Madiai F., Stephens R.L., Jr., Hackshaw K.V. Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Brain Res. Mol. Brain Res. 2004;128:193–200. doi: 10.1016/j.molbrainres.2004.06.037. PubMed DOI

Karu K., Swanwick R.S., Novejarque-Gadea A., Antunes-Martins A., Thomas B., Yoshimi E., Foster W., Fang M., McMahon S.B., Bennett D.L.H., et al. Quantitative Proteomic Analysis of the Central Amygdala in Neuropathic Pain Model Rats. J. Proteome Res. 2020;19:1592–1619. doi: 10.1021/acs.jproteome.9b00805. PubMed DOI

Persoon C.M., Hoogstraaten R.I., Nassal J.P., van Weering J.R.T., Kaeser P.S., Toonen R.F., Verhage M. The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators. Neuron. 2019;104:1065–1080.e12. doi: 10.1016/j.neuron.2019.09.015. PubMed DOI PMC

Zou W., Zhan X., Li M., Song Z., Liu C., Peng F., Guo Q. Identification of differentially expressed proteins in the spinal cord of neuropathic pain models with PKCgamma silence by proteomic analysis. Brain Res. 2012;1440:34–46. doi: 10.1016/j.brainres.2011.12.046. PubMed DOI

Calabrese V., Scapagnini G., Ravagna A., Giuffrida Stella A.M., Butterfield D.A. Molecular chaperones and their roles in neural cell differentiation. Dev. Neurosci. 2002;24:1–13. doi: 10.1159/000064941. PubMed DOI

Zou W., Xu W., Song Z., Zhong T., Weng Y., Huang C., Li M., Zhang C., Zhan X., Guo Q. Proteomic Identification of an Upregulated Isoform of Annexin A3 in the Spinal Cords of Rats in a Neuropathic Pain Model. Front. Neurosci. 2017;11:484. doi: 10.3389/fnins.2017.00484. PubMed DOI PMC

Komori N., Takemori N., Kim H.K., Singh A., Hwang S.H., Foreman R.D., Chung K., Chung J.M., Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: Altered protein regulation following segmental spinal nerve ligation injury. Physiol. Genom. 2007;29:215–230. doi: 10.1152/physiolgenomics.00255.2006. PubMed DOI

Niederberger E., Geisslinger G. Proteomics in neuropathic pain research. Anesthesiology. 2008;108:314–323. doi: 10.1097/01.anes.0000299838.13368.6e. PubMed DOI

Taniguchi H., Horinaka M., Yoshida T., Yano K., Goda A.E., Yasuda S., Wakada M., Sakai T. Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules. Mol. Cancer Ther. 2012;11:2294–2300. doi: 10.1158/1535-7163.MCT-12-0031. PubMed DOI

Dolgacheva L.P., Berezhnov A.V., Fedotova E.I., Zinchenko V.P., Abramov A.Y. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J. Bioenerg. Biomembr. 2019;51:175–188. doi: 10.1007/s10863-019-09798-4. PubMed DOI PMC

Dunyak B.M., Gestwicki J.E. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J. Med. Chem. 2016;59:9622–9644. doi: 10.1021/acs.jmedchem.6b00411. PubMed DOI PMC

Chuang D.M., Hough C., Senatorov V.V. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2005;45:269–290. doi: 10.1146/annurev.pharmtox.45.120403.095902. PubMed DOI

Indraswari F., Wong P.T., Yap E., Ng Y.K., Dheen S.T. Upregulation of Dpysl2 and Spna2 gene expression in the rat brain after ischemic stroke. Neurochem. Int. 2009;55:235–242. doi: 10.1016/j.neuint.2009.03.005. PubMed DOI

Lei L.G., Zhang Y.Q., Zhao Z.Q. Pain-related aversion and Fos expression in the central nervous system in rats. Neuroreport. 2004;15:67–71. doi: 10.1097/00001756-200401190-00014. PubMed DOI

Bliss T.V., Collingridge G.L., Kaang B.K., Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 2016;17:485–496. doi: 10.1038/nrn.2016.68. PubMed DOI

Ujcikova H., Vosahlikova M., Roubalova L., Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10days; comparison with animals exposed to morphine and subsequently nurtured for 20days in the absence of this drug. J. Proteom. 2016;145:11–23. doi: 10.1016/j.jprot.2016.02.019. PubMed DOI

Baggerman G., Vierstraete E., De Loof A., Schoofs L. Gel-based versus gel-free proteomics: A review. Comb. Chem. High Throughput Screen. 2005;8:669–677. doi: 10.2174/138620705774962490. PubMed DOI

Gauci V.J., Wright E.P., Coorssen J.R. Quantitative proteomics: Assessing the spectrum of in-gel protein detection methods. J. Chem. Biol. 2011;4:3–29. doi: 10.1007/s12154-010-0043-5. PubMed DOI PMC

Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999;17:994–999. doi: 10.1038/13690. PubMed DOI

De Felice M., Sanoja R., Wang R., Vera-Portocarrero L., Oyarzo J., King T., Ossipov M.H., Vanderah T.W., Lai J., Dussor G.O., et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152:2701–2709. doi: 10.1016/j.pain.2011.06.008. PubMed DOI PMC

Yarnitsky D. Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain. 2015;156((Suppl 1)):S24–S31. doi: 10.1097/01.j.pain.0000460343.46847.58. PubMed DOI

Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): Its relevance for acute and chronic pain states. Curr. Opin. Anaesthesiol. 2010;23:611–615. doi: 10.1097/ACO.0b013e32833c348b. PubMed DOI

Yarnitsky D., Crispel Y., Eisenberg E., Granovsky Y., Ben-Nun A., Sprecher E., Best L.A., Granot M. Prediction of chronic post-operative pain: Pre-operative DNIC testing identifies patients at risk. Pain. 2008;138:22–28. doi: 10.1016/j.pain.2007.10.033. PubMed DOI

Moutal A., White K.A., Chefdeville A., Laufmann R.N., Vitiello P.F., Feinstein D., Weimer J.M., Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol. Neurobiol. 2019;56:6736–6755. doi: 10.1007/s12035-019-1568-4. PubMed DOI PMC

Moutal A., Yang X., Li W., Gilbraith K.B., Luo S., Cai S., Francois-Moutal L., Chew L.A., Yeon S.K., Bellampalli S.S., et al. CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide. Pain. 2017;158:2301–2319. doi: 10.1097/j.pain.0000000000001002. PubMed DOI PMC

Buchta W.C., Moutal A., Hines B., Garcia-Keller C., Smith A.C.W., Kalivas P., Khanna R., Riegel A.C. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol. Neurobiol. 2020;57:346–357. doi: 10.1007/s12035-019-01711-9. PubMed DOI PMC

Metz A.E., Yau H.J., Centeno M.V., Apkarian A.V., Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl. Acad. Sci. USA. 2009;106:2423–2428. doi: 10.1073/pnas.0809897106. PubMed DOI PMC

Hubbard C.S., Khan S.A., Xu S., Cha M., Masri R., Seminowicz D.A. Behavioral, metabolic and functional brain changes in a rat model of chronic neuropathic pain: A longitudinal MRI study. Neuroimage. 2015;107:333–344. doi: 10.1016/j.neuroimage.2014.12.024. PubMed DOI

Kim S.H., Chung J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50:355–363. doi: 10.1016/0304-3959(92)90041-9. PubMed DOI

Dixon W.J. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 1980;20:441–462. doi: 10.1146/annurev.pa.20.040180.002301. PubMed DOI

Hargreaves K., Dubner R., Brown F., Flores C., Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI

Rabilloud T., Vuillard L., Gilly C., Lawrence J.J. Silver-staining of proteins in polyacrylamide gels: A general overview. Cell Mol. Biol. 1994;40:57–75. PubMed

Gharahdaghi F., Weinberg C.R., Meagher D.A., Imai B.S., Mische S.M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis. 1999;20:601–605. doi: 10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6. PubMed DOI

Andon N.L., Hollingworth S., Koller A., Greenland A.J., Yates J.R., 3rd, Haynes P.A. Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics. 2002;2:1156–1168. doi: 10.1002/1615-9861(200209)2:9<1156::AID-PROT1156>3.0.CO;2-4. PubMed DOI

Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. doi: 10.1021/ac025747h. PubMed DOI

Qian W.J., Liu T., Monroe M.E., Strittmatter E.F., Jacobs J.M., Kangas L.J., Petritis K., Camp D.G., 2nd, Smith R.D. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: The human proteome. J. Proteome Res. 2005;4:53–62. doi: 10.1021/pr0498638. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...