Time-Dependent Changes in Protein Composition of Medial Prefrontal Cortex in Rats with Neuropathic Pain
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01DA041809
NIH HHS - United States
CA023074
NIH HHS - United States
CZ.02.2.69/0.0/0.0/16_027/0008013
European Structural and Investment Funds
PubMed
35055141
PubMed Central
PMC8781622
DOI
10.3390/ijms23020955
PII: ijms23020955
Knihovny.cz E-zdroje
- Klíčová slova
- affective dimension of pain, neuropathic pain, pain chronification, prefrontal cortex, proteomics,
- MeSH
- časové faktory MeSH
- chromatografie kapalinová MeSH
- hyperalgezie etiologie metabolismus MeSH
- krysa rodu Rattus MeSH
- měření bolesti MeSH
- míšní nervy zranění MeSH
- neuralgie etiologie metabolismus MeSH
- potkani Sprague-Dawley MeSH
- prefrontální mozková kůra metabolismus MeSH
- proteomika metody MeSH
- regulace genové exprese MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.
Zobrazit více v PubMed
Emery E.C., Luiz A.P., Wood J.N. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin. Ther. Targets. 2016;20:975–983. doi: 10.1517/14728222.2016.1162295. PubMed DOI PMC
Mapplebeck J.C.S., Lorenzo L.E., Lee K.Y., Gauthier C., Muley M.M., De Koninck Y., Prescott S.A., Salter M.W. Chloride Dysregulation through Downregulation of KCC2 Mediates Neuropathic Pain in Both Sexes. Cell Rep. 2019;28:590–596.e4. doi: 10.1016/j.celrep.2019.06.059. PubMed DOI
Coull J.A., Boudreau D., Bachand K., Prescott S.A., Nault F., Sik A., De Koninck P., De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424:938–942. doi: 10.1038/nature01868. PubMed DOI
Farmer M.A., Baliki M.N., Apkarian A.V. A dynamic network perspective of chronic pain. Neurosci. Lett. 2012;520:197–203. doi: 10.1016/j.neulet.2012.05.001. PubMed DOI PMC
Baliki M.N., Petre B., Torbey S., Herrmann K.M., Huang L., Schnitzer T.J., Fields H.L., Apkarian A.V. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 2012;15:1117–1119. doi: 10.1038/nn.3153. PubMed DOI PMC
Apkarian A.V., Baliki M.N., Farmer M.A. Predicting transition to chronic pain. Curr. Opin. Neurol. 2013;26:360–367. doi: 10.1097/WCO.0b013e32836336ad. PubMed DOI PMC
Tracey I., Bushnell M.C. How neuroimaging studies have challenged us to rethink: Is chronic pain a disease? J. Pain Off. J. Am. Pain Soc. 2009;10:1113–1120. doi: 10.1016/j.jpain.2009.09.001. PubMed DOI
Harris R.E., Napadow V., Huggins J.P., Pauer L., Kim J., Hampson J., Sundgren P.C., Foerster B., Petrou M., Schmidt-Wilcke T., et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119:1453–1464. doi: 10.1097/ALN.0000000000000017. PubMed DOI
Iannetti G.D., Zambreanu L., Wise R.G., Buchanan T.J., Huggins J.P., Smart T.S., Vennart W., Tracey I. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc. Natl. Acad. Sci. USA. 2005;102:18195–18200. doi: 10.1073/pnas.0506624102. PubMed DOI PMC
Oertel B.G., Preibisch C., Wallenhorst T., Hummel T., Geisslinger G., Lanfermann H., Lotsch J. Differential opioid action on sensory and affective cerebral pain processing. Clin. Pharmacol. Ther. 2008;83:577–588. doi: 10.1038/sj.clpt.6100441. PubMed DOI
Rauck R., Coffey R.J., Schultz D.M., Wallace M.S., Webster L.R., McCarville S.E., Grigsby E.J., Page L.M. Intrathecal gabapentin to treat chronic intractable noncancer pain. Anesthesiology. 2013;119:675–686. doi: 10.1097/ALN.0b013e3182a10fbf. PubMed DOI
Hama A., Natsume T., Ogawa S.Y., Awaga Y., Hayashi I., Matsuda A., Takamatsu H. Pain-Related Behavior and Brain Activation in a Cynomolgus Macaque Model of Postoperative Pain. CNS Neurol. Disord. Drug Targets. 2018;17:348–360. doi: 10.2174/1871527317666180515121350. PubMed DOI
Bannister K., Qu C., Navratilova E., Oyarzo J., Xie J.Y., King T., Dickenson A.H., Porreca F. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain. 2017;158:2386–2395. doi: 10.1097/j.pain.0000000000001040. PubMed DOI PMC
Navratilova E., Xie J.Y., Meske D., Qu C., Morimura K., Okun A., Arakawa N., Ossipov M., Fields H.L., Porreca F. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J. Neurosci. 2015;35:7264–7271. doi: 10.1523/JNEUROSCI.3862-14.2015. PubMed DOI PMC
Johansen J.P., Fields H.L., Manning B.H. The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA. 2001;98:8077–8082. doi: 10.1073/pnas.141218998. PubMed DOI PMC
Bushnell M.C., Ceko M., Low L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013;14:502–511. doi: 10.1038/nrn3516. PubMed DOI PMC
Villemure C., Bushnell M.C. Mood influences supraspinal pain processing separately from attention. J. Neurosci. Off. J. Soc. Neurosci. 2009;29:705–715. doi: 10.1523/JNEUROSCI.3822-08.2009. PubMed DOI PMC
Wager T.D., Rilling J.K., Smith E.E., Sokolik A., Casey K.L., Davidson R.J., Kosslyn S.M., Rose R.M., Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303:1162–1167. doi: 10.1126/science.1093065. PubMed DOI
Hsieh J.C., Belfrage M., Stone-Elander S., Hansson P., Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63:225–236. doi: 10.1016/0304-3959(95)00048-W. PubMed DOI
Willoch F., Gamringer U., Medele R., Steude U., Tolle T.R. Analgesia by electrostimulation of the trigeminal ganglion in patients with trigeminopathic pain: A PET activation study. Pain. 2003;103:119–130. doi: 10.1016/s0304-3959(02)00423-2. PubMed DOI
Becerra L., Navratilova E., Porreca F., Borsook D. Analogous Responses in the Nucleus Accumbens and Cingulate Cortex to Pain Onset (Aversion) and Offset (Relief) in Rats and Humans. J. Neurophysiol. 2013;110:1221–1226. doi: 10.1152/jn.00284.2013. PubMed DOI PMC
Zhang Z., Gadotti V.M., Chen L., Souza I.A., Stemkowski P.L., Zamponi G.W. Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. Cell Rep. 2015;12:752–759. doi: 10.1016/j.celrep.2015.07.001. PubMed DOI
Huang J., Gadotti V.M., Chen L., Souza I.A., Huang S., Wang D., Ramakrishnan C., Deisseroth K., Zhang Z., Zamponi G.W. A neuronal circuit for activating descending modulation of neuropathic pain. Nat. Neurosci. 2019;22:1659–1668. doi: 10.1038/s41593-019-0481-5. PubMed DOI
Price T.J., Ray P.R. Recent advances toward understanding the mysteries of the acute to chronic pain transition. Curr. Opin. Physiol. 2019;11:42–50. doi: 10.1016/j.cophys.2019.05.015. PubMed DOI PMC
Zubieta J.K., Stohler C.S. Neurobiological mechanisms of placebo responses. Ann. N. Y. Acad. Sci. 2009;1156:198–210. doi: 10.1111/j.1749-6632.2009.04424.x. PubMed DOI PMC
Johansen J.P., Fields H.L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 2004;7:398–403. doi: 10.1038/nn1207. PubMed DOI
LaGraize S.C., Labuda C.J., Rutledge M.A., Jackson R.L., Fuchs P.N. Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp. Neurol. 2004;188:139–148. doi: 10.1016/j.expneurol.2004.04.003. PubMed DOI
Qu C., King T., Okun A., Lai J., Fields H.L., Porreca F. Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain. 2011;152:1641–1648. doi: 10.1016/j.pain.2011.03.002. PubMed DOI PMC
Hashmi J.A., Baliki M.N., Huang L., Baria A.T., Torbey S., Hermann K.M., Schnitzer T.J., Apkarian A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Pt 9Brain. 2013;136:2751–2768. doi: 10.1093/brain/awt211. PubMed DOI PMC
Seminowicz D.A., Laferriere A.L., Millecamps M., Yu J.S.C., Coderre T.J., Bushnell M.C. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. NeuroImage. 2009;47:1007–1014. doi: 10.1016/j.neuroimage.2009.05.068. PubMed DOI PMC
Ajit S.K., Ramineni S., Edris W., Hunt R.A., Hum W.T., Hepler J.R., Young K.H. RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Cell. Signal. 2007;19:723–730. doi: 10.1016/j.cellsig.2006.09.008. PubMed DOI
Sanchez-Blazquez P., Rodriguez-Munoz M., Montero C., de la Torre-Madrid E., Garzon J. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Neuropharmacology. 2008;54:319–330. doi: 10.1016/j.neuropharm.2007.10.002. PubMed DOI
Sui P., Watanabe H., Ossipov M.H., Bakalkin G., Artemenko K., Bergquist J. Proteomics of neuropathic pain: Proteins and signaling pathways affected in a rat model. J. Proteome Res. 2014;13:3957–3965. doi: 10.1021/pr500241q. PubMed DOI
Milligan G., Kostenis E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol. 2006;147((Suppl 1)):S46–S55. doi: 10.1038/sj.bjp.0706405. PubMed DOI PMC
Jiang M., Bajpayee N.S. Molecular mechanisms of go signaling. Neurosignals. 2009;17:23–41. doi: 10.1159/000186688. PubMed DOI PMC
Singh O.V., Yaster M., Xu J.T., Guan Y., Guan X., Dharmarajan A.M., Raja S.N., Zeitlin P.L., Tao Y.X. Proteome of synaptosome-associated proteins in spinal cord dorsal horn after peripheral nerve injury. Proteomics. 2009;9:1241–1253. doi: 10.1002/pmic.200800636. PubMed DOI PMC
Alzate O., Hussain S.R., Goettl V.M., Tewari A.K., Madiai F., Stephens R.L., Jr., Hackshaw K.V. Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Brain Res. Mol. Brain Res. 2004;128:193–200. doi: 10.1016/j.molbrainres.2004.06.037. PubMed DOI
Karu K., Swanwick R.S., Novejarque-Gadea A., Antunes-Martins A., Thomas B., Yoshimi E., Foster W., Fang M., McMahon S.B., Bennett D.L.H., et al. Quantitative Proteomic Analysis of the Central Amygdala in Neuropathic Pain Model Rats. J. Proteome Res. 2020;19:1592–1619. doi: 10.1021/acs.jproteome.9b00805. PubMed DOI
Persoon C.M., Hoogstraaten R.I., Nassal J.P., van Weering J.R.T., Kaeser P.S., Toonen R.F., Verhage M. The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators. Neuron. 2019;104:1065–1080.e12. doi: 10.1016/j.neuron.2019.09.015. PubMed DOI PMC
Zou W., Zhan X., Li M., Song Z., Liu C., Peng F., Guo Q. Identification of differentially expressed proteins in the spinal cord of neuropathic pain models with PKCgamma silence by proteomic analysis. Brain Res. 2012;1440:34–46. doi: 10.1016/j.brainres.2011.12.046. PubMed DOI
Calabrese V., Scapagnini G., Ravagna A., Giuffrida Stella A.M., Butterfield D.A. Molecular chaperones and their roles in neural cell differentiation. Dev. Neurosci. 2002;24:1–13. doi: 10.1159/000064941. PubMed DOI
Zou W., Xu W., Song Z., Zhong T., Weng Y., Huang C., Li M., Zhang C., Zhan X., Guo Q. Proteomic Identification of an Upregulated Isoform of Annexin A3 in the Spinal Cords of Rats in a Neuropathic Pain Model. Front. Neurosci. 2017;11:484. doi: 10.3389/fnins.2017.00484. PubMed DOI PMC
Komori N., Takemori N., Kim H.K., Singh A., Hwang S.H., Foreman R.D., Chung K., Chung J.M., Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: Altered protein regulation following segmental spinal nerve ligation injury. Physiol. Genom. 2007;29:215–230. doi: 10.1152/physiolgenomics.00255.2006. PubMed DOI
Niederberger E., Geisslinger G. Proteomics in neuropathic pain research. Anesthesiology. 2008;108:314–323. doi: 10.1097/01.anes.0000299838.13368.6e. PubMed DOI
Taniguchi H., Horinaka M., Yoshida T., Yano K., Goda A.E., Yasuda S., Wakada M., Sakai T. Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules. Mol. Cancer Ther. 2012;11:2294–2300. doi: 10.1158/1535-7163.MCT-12-0031. PubMed DOI
Dolgacheva L.P., Berezhnov A.V., Fedotova E.I., Zinchenko V.P., Abramov A.Y. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J. Bioenerg. Biomembr. 2019;51:175–188. doi: 10.1007/s10863-019-09798-4. PubMed DOI PMC
Dunyak B.M., Gestwicki J.E. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J. Med. Chem. 2016;59:9622–9644. doi: 10.1021/acs.jmedchem.6b00411. PubMed DOI PMC
Chuang D.M., Hough C., Senatorov V.V. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2005;45:269–290. doi: 10.1146/annurev.pharmtox.45.120403.095902. PubMed DOI
Indraswari F., Wong P.T., Yap E., Ng Y.K., Dheen S.T. Upregulation of Dpysl2 and Spna2 gene expression in the rat brain after ischemic stroke. Neurochem. Int. 2009;55:235–242. doi: 10.1016/j.neuint.2009.03.005. PubMed DOI
Lei L.G., Zhang Y.Q., Zhao Z.Q. Pain-related aversion and Fos expression in the central nervous system in rats. Neuroreport. 2004;15:67–71. doi: 10.1097/00001756-200401190-00014. PubMed DOI
Bliss T.V., Collingridge G.L., Kaang B.K., Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 2016;17:485–496. doi: 10.1038/nrn.2016.68. PubMed DOI
Ujcikova H., Vosahlikova M., Roubalova L., Svoboda P. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10days; comparison with animals exposed to morphine and subsequently nurtured for 20days in the absence of this drug. J. Proteom. 2016;145:11–23. doi: 10.1016/j.jprot.2016.02.019. PubMed DOI
Baggerman G., Vierstraete E., De Loof A., Schoofs L. Gel-based versus gel-free proteomics: A review. Comb. Chem. High Throughput Screen. 2005;8:669–677. doi: 10.2174/138620705774962490. PubMed DOI
Gauci V.J., Wright E.P., Coorssen J.R. Quantitative proteomics: Assessing the spectrum of in-gel protein detection methods. J. Chem. Biol. 2011;4:3–29. doi: 10.1007/s12154-010-0043-5. PubMed DOI PMC
Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999;17:994–999. doi: 10.1038/13690. PubMed DOI
De Felice M., Sanoja R., Wang R., Vera-Portocarrero L., Oyarzo J., King T., Ossipov M.H., Vanderah T.W., Lai J., Dussor G.O., et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152:2701–2709. doi: 10.1016/j.pain.2011.06.008. PubMed DOI PMC
Yarnitsky D. Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain. 2015;156((Suppl 1)):S24–S31. doi: 10.1097/01.j.pain.0000460343.46847.58. PubMed DOI
Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): Its relevance for acute and chronic pain states. Curr. Opin. Anaesthesiol. 2010;23:611–615. doi: 10.1097/ACO.0b013e32833c348b. PubMed DOI
Yarnitsky D., Crispel Y., Eisenberg E., Granovsky Y., Ben-Nun A., Sprecher E., Best L.A., Granot M. Prediction of chronic post-operative pain: Pre-operative DNIC testing identifies patients at risk. Pain. 2008;138:22–28. doi: 10.1016/j.pain.2007.10.033. PubMed DOI
Moutal A., White K.A., Chefdeville A., Laufmann R.N., Vitiello P.F., Feinstein D., Weimer J.M., Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol. Neurobiol. 2019;56:6736–6755. doi: 10.1007/s12035-019-1568-4. PubMed DOI PMC
Moutal A., Yang X., Li W., Gilbraith K.B., Luo S., Cai S., Francois-Moutal L., Chew L.A., Yeon S.K., Bellampalli S.S., et al. CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide. Pain. 2017;158:2301–2319. doi: 10.1097/j.pain.0000000000001002. PubMed DOI PMC
Buchta W.C., Moutal A., Hines B., Garcia-Keller C., Smith A.C.W., Kalivas P., Khanna R., Riegel A.C. Dynamic CRMP2 Regulation of CaV2.2 in the Prefrontal Cortex Contributes to the Reinstatement of Cocaine Seeking. Mol. Neurobiol. 2020;57:346–357. doi: 10.1007/s12035-019-01711-9. PubMed DOI PMC
Metz A.E., Yau H.J., Centeno M.V., Apkarian A.V., Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl. Acad. Sci. USA. 2009;106:2423–2428. doi: 10.1073/pnas.0809897106. PubMed DOI PMC
Hubbard C.S., Khan S.A., Xu S., Cha M., Masri R., Seminowicz D.A. Behavioral, metabolic and functional brain changes in a rat model of chronic neuropathic pain: A longitudinal MRI study. Neuroimage. 2015;107:333–344. doi: 10.1016/j.neuroimage.2014.12.024. PubMed DOI
Kim S.H., Chung J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50:355–363. doi: 10.1016/0304-3959(92)90041-9. PubMed DOI
Dixon W.J. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 1980;20:441–462. doi: 10.1146/annurev.pa.20.040180.002301. PubMed DOI
Hargreaves K., Dubner R., Brown F., Flores C., Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI
Rabilloud T., Vuillard L., Gilly C., Lawrence J.J. Silver-staining of proteins in polyacrylamide gels: A general overview. Cell Mol. Biol. 1994;40:57–75. PubMed
Gharahdaghi F., Weinberg C.R., Meagher D.A., Imai B.S., Mische S.M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis. 1999;20:601–605. doi: 10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6. PubMed DOI
Andon N.L., Hollingworth S., Koller A., Greenland A.J., Yates J.R., 3rd, Haynes P.A. Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics. 2002;2:1156–1168. doi: 10.1002/1615-9861(200209)2:9<1156::AID-PROT1156>3.0.CO;2-4. PubMed DOI
Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. doi: 10.1021/ac025747h. PubMed DOI
Qian W.J., Liu T., Monroe M.E., Strittmatter E.F., Jacobs J.M., Kangas L.J., Petritis K., Camp D.G., 2nd, Smith R.D. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: The human proteome. J. Proteome Res. 2005;4:53–62. doi: 10.1021/pr0498638. PubMed DOI