Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation

. 2016 ; 10 (3) : 175-84. [epub] 20160108

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26745591

Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Cav3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCav3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCav3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states.

Zobrazit více v PubMed

Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57:411-25; PMID:16382099; http://dx.doi.org/10.1124/pr.57.4.5 PubMed DOI

Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003; 83:117-61; PMID:12506128; http://dx.doi.org/10.1152/physrev.00018.2002 PubMed DOI

Crunelli V, Cope DW, Hughes SW. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 2006; 40:175-90; PMID:16777223; http://dx.doi.org/10.1016/j.ceca.2006.04.022 PubMed DOI PMC

Bal T, McCormick DA. Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol 1997; 77:3145-56; PMID:9212264 PubMed

Beurrier C, Congar P, Bioulac B, Hammond C. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 1999; 19:599-609; PMID:9880580 PubMed PMC

Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 2003; 551:927-43; PMID:12865506; http://dx.doi.org/10.1113/jphysiol.2003.046847 PubMed DOI PMC

Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, et al.. A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 2012; 287:2810-8; PMID:22130660; http://dx.doi.org/10.1074/jbc.M111.290882 PubMed DOI PMC

Weiss N, Zamponi GW. Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 2013; 1828:1579-86; PMID:22885170; http://dx.doi.org/10.1016/j.bbamem.2012.07.031 PubMed DOI

Zhang Y, Jiang X, Snutch TP, Tao J. Modulation of low-voltage-activated T-type Ca2+ channels. Biochim Biophys Acta 2013; 1828:1550-9; PMID:22975282; http://dx.doi.org/10.1016/j.bbamem.2012.08.032 PubMed DOI

Peers C, Elies J, Gamper N. Novel ways to regulate T-type Ca2+ channels. Channels (Austin) 2015; 9:68-9; PMID:25715174; http://dx.doi.org/10.1080/19336950.2015.1017995 PubMed DOI PMC

Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015; 67:821-70; PMID:26362469; http://dx.doi.org/10.1124/pr.114.009654 PubMed DOI PMC

M'Dahoma S, Gadotti VM, Zhang FX, Park B, Nam JH, Onnis V, Balboni G, Lee JY, Zamponi GW. Effect of the T-type channel blocker KYS-05090S in mouse models of acute and neuropathic pain. Pflugers Arch 2016; 468:193-9; http://dx.doi.org/10.1007/s00424-015-1733-1. PubMed DOI

Yu H, Seo JB, Jung SR, Koh DS, Hille B. Noradrenaline upregulates T-type calcium channels in rat pinealocytes. J Physiol 2015; 593:887-904; PMID:25504572; http://dx.doi.org/10.1113/jphysiol.2014.284208 PubMed DOI PMC

Sellak H, Zhou C, Liu B, Chen H, Lincoln TM, Wu S. Transcriptional regulation of α1H T-type calcium channel under hypoxia. Am J Physiol Cell Physiol 2014; 307:C648-56; PMID:25099734; http://dx.doi.org/10.1152/ajpcell.00210.2014 PubMed DOI PMC

van Loo KM, Schaub C, Pernhorst K, Yaari Y, Beck H, Schoch S, Becker AJ. Transcriptional regulation of T-type calcium channel CaV3.2: bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein-silencing transcription factor (REST). J Biol Chem 2012; 287:15489-501; PMID:22431737; http://dx.doi.org/10.1074/jbc.M111.310763 PubMed DOI PMC

Murbartián J, Arias JM, Perez-Reyes E. Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol 2004; 92:3399-407; PMID:15254077; http://dx.doi.org/10.1152/jn.00498.2004 PubMed DOI

Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW. Expression of T-type calcium channel splice variants in human glioma. Glia 2004; 48:112-9; PMID:15378657; http://dx.doi.org/10.1002/glia.20063 PubMed DOI

Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, et al.. A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 2009; 29:371-80; PMID:19144837; http://dx.doi.org/10.1523/JNEUROSCI.5295-08.2009 PubMed DOI PMC

David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP. Splice-variant changes of the CaV3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 2010; 4:375-89; PMID:20699644; http://dx.doi.org/10.4161/chan.4.5.12874 PubMed DOI PMC

Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 2003; 424:209-13; PMID:12853961; http://dx.doi.org/10.1038/nature01772 PubMed DOI

Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES. T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol 2010; 298:C1353-62; PMID:20147652; http://dx.doi.org/10.1152/ajpcell.00235.2009 PubMed DOI

García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, et al.. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 2014; 83:1144-58; PMID:25189210; http://dx.doi.org/10.1016/j.neuron.2014.07.036 PubMed DOI

Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P. Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci U S A 2015; 112:13705-10; PMID:26483470 PubMed PMC

Weiss N, Black SA, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 2013; 465:1159-70; PMID:23503728; http://dx.doi.org/10.1007/s00424-013-1259-3 PubMed DOI

Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, et al.. Reversal of neuropathic pain in diabetes by targeting glycosylation of CaV3.2 T-type calcium channels. Diabetes 2013; 62:3828-38; PMID:23835327; http://dx.doi.org/10.2337/db13-0813 PubMed DOI PMC

Fermini B, Nathan RD. Removal of sialic acid alters both T- and L-type calcium currents in cardiac myocytes. Am J Physiol 1991; 260:H735-43; PMID:2000969 PubMed

Yee HF, Weiss JN, Langer GA. Neuraminidase selectively enhances transient Ca2+ current in cardiac myocytes. Am J Physiol 1989; 256:C1267-72; PMID:2544097 PubMed

Lazniewska J, Weiss N. The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 2014; 167:67-114; PMID:25239698 PubMed

Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2012; 2:1269-301; PMID:23798301 PubMed

Penuela S, Lohman AW, Lai W, Gyenis L, Litchfield DW, Isakson BE, Laird DW. Diverse post-translational modifications of the pannexin family of channel-forming proteins. Channels (Austin) 2014; 8:124-30; PMID:24418849; http://dx.doi.org/10.4161/chan.27422 PubMed DOI PMC

Bennett E, Urcan MS, Tinkle SS, Koszowski AG, Levinson SR. Contribution of sialic acid to the voltage dependence of sodium channel gating. A possible electrostatic mechanism. J Gen Physiol 1997; 109:327-43; PMID:9089440; http://dx.doi.org/10.1085/jgp.109.3.327 PubMed DOI PMC

Zhang Y, Hartmann HA, Satin J. Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 1999; 171:195-207; PMID:10501828; http://dx.doi.org/10.1007/s002329900571 PubMed DOI

Watanabe I, Wang HG, Sutachan JJ, Zhu J, Recio-Pinto E, Thornhill WB. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. J Physiol 2003; 550:51-66; PMID:12879861; http://dx.doi.org/10.1113/jphysiol.2003.040337 PubMed DOI PMC

Watanabe I, Zhu J, Sutachan JJ, Gottschalk A, Recio-Pinto E, Thornhill WB. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Res 2007; 1144:1-18; PMID:17324383; http://dx.doi.org/10.1016/j.brainres.2007.01.092 PubMed DOI

Schwetz TA, Norring SA, Bennett ES. N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating. Biochim Biophys Acta 2010; 1798:367-75; PMID:19961828; http://dx.doi.org/10.1016/j.bbamem.2009.11.018 PubMed DOI

Kurejová M, Pavlovicová M, Lacinová L. Monovalent currents through the T-type Cav3.1 channels and their block by Mg2+. Gen Physiol Biophys 2007; 26:234-9 PubMed

Schwalbe RA, Wang Z, Wible BA, Brown AM. Potassium channel structure and function as reported by a single glycosylation sequon. J Biol Chem 1995; 270:15336-40; PMID:7797521; http://dx.doi.org/10.1074/jbc.270.25.15336 PubMed DOI

Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, Krag SS, Betenbaugh MJ. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 2014; 453:243-53; PMID:24971539; http://dx.doi.org/10.1016/j.bbrc.2014.06.067 PubMed DOI PMC

François A, Laffray S, Pizzoccaro A, Eschalier A, Bourinet E. T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 2014; 466:707-17; PMID:24590509; http://dx.doi.org/10.1007/s00424-014-1484-4 PubMed DOI

Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140; PMID:24382884; http://dx.doi.org/10.1152/physrev.00023.2013 PubMed DOI

Cao XH, Byun HS, Chen SR, Pan HL. Diabetic neuropathy enhances voltage-activated Ca2+ channel activity and its control by M4 muscarinic receptors in primary sensory neurons. J Neurochem 2011; 119:594-603; PMID:21883220; http://dx.doi.org/10.1111/j.1471-4159.2011.07456.x PubMed DOI PMC

Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995; 15:3110-7; PMID:7722649 PubMed PMC

Zhang Y, Mori M, Burgess DL, Noebels JL. Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 2002; 22:6362-71; PMID:12151514 PubMed PMC

Zhang Y, Vilaythong AP, Yoshor D, Noebels JL. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma. J Neurosci 2004; 24:5239-48; PMID:15175394; http://dx.doi.org/10.1523/JNEUROSCI.0992-04.2004 PubMed DOI PMC

Cain SM, Snutch TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta 2013; 1828:1572-8; PMID:22885138; http://dx.doi.org/10.1016/j.bbamem.2012.07.028 PubMed DOI

Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, et al.. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54:239-43; PMID:12891677; http://dx.doi.org/10.1002/ana.10607 PubMed DOI

Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004; 279:9681-4; PMID:14729682; http://dx.doi.org/10.1074/jbc.C400006200 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

T-type channels in neuropathic pain - Villain or victim?

. 2020 Dec ; 14 (1) : 98-100.

Functional identification of potential non-canonical N-glycosylation sites within Cav3.2 T-type calcium channels

. 2020 Nov 11 ; 13 (1) : 149. [epub] 20201111

A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity

. 2020 Mar 06 ; 13 (1) : 33. [epub] 20200306

Genetic T-type calcium channelopathies

. 2020 Jan ; 57 (1) : 1-10. [epub] 20190619

The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels

. 2017 Sep 14 ; 7 (1) : 11513. [epub] 20170914

Trafficking of neuronal calcium channels

. 2017 Feb ; 1 (1) : NS20160003. [epub] 20170220

Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression

. 2016 Nov ; 468 (11-12) : 1837-1851. [epub] 20160923

A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane

. 2016 Sep 02 ; 10 (5) : 346-354. [epub] 20160505

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...