Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26745591
PubMed Central
PMC4954584
DOI
10.1080/19336950.2016.1138189
Knihovny.cz E-zdroje
- Klíčová slova
- Cav3.2, T-type channel, calcium channel, gating, glycosylation,
- MeSH
- asparagin metabolismus MeSH
- elektrofyziologické jevy MeSH
- gating iontového kanálu MeSH
- glykosylace MeSH
- HEK293 buňky MeSH
- lidé MeSH
- permeabilita MeSH
- vápníkové kanály - typ T chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- asparagin MeSH
- CACNA1H protein, human MeSH Prohlížeč
- vápníkové kanály - typ T MeSH
Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Cav3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCav3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCav3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states.
Zobrazit více v PubMed
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57:411-25; PMID:16382099; http://dx.doi.org/10.1124/pr.57.4.5 PubMed DOI
Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003; 83:117-61; PMID:12506128; http://dx.doi.org/10.1152/physrev.00018.2002 PubMed DOI
Crunelli V, Cope DW, Hughes SW. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 2006; 40:175-90; PMID:16777223; http://dx.doi.org/10.1016/j.ceca.2006.04.022 PubMed DOI PMC
Bal T, McCormick DA. Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol 1997; 77:3145-56; PMID:9212264 PubMed
Beurrier C, Congar P, Bioulac B, Hammond C. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 1999; 19:599-609; PMID:9880580 PubMed PMC
Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol 2003; 551:927-43; PMID:12865506; http://dx.doi.org/10.1113/jphysiol.2003.046847 PubMed DOI PMC
Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, et al.. A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 2012; 287:2810-8; PMID:22130660; http://dx.doi.org/10.1074/jbc.M111.290882 PubMed DOI PMC
Weiss N, Zamponi GW. Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 2013; 1828:1579-86; PMID:22885170; http://dx.doi.org/10.1016/j.bbamem.2012.07.031 PubMed DOI
Zhang Y, Jiang X, Snutch TP, Tao J. Modulation of low-voltage-activated T-type Ca2+ channels. Biochim Biophys Acta 2013; 1828:1550-9; PMID:22975282; http://dx.doi.org/10.1016/j.bbamem.2012.08.032 PubMed DOI
Peers C, Elies J, Gamper N. Novel ways to regulate T-type Ca2+ channels. Channels (Austin) 2015; 9:68-9; PMID:25715174; http://dx.doi.org/10.1080/19336950.2015.1017995 PubMed DOI PMC
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015; 67:821-70; PMID:26362469; http://dx.doi.org/10.1124/pr.114.009654 PubMed DOI PMC
M'Dahoma S, Gadotti VM, Zhang FX, Park B, Nam JH, Onnis V, Balboni G, Lee JY, Zamponi GW. Effect of the T-type channel blocker KYS-05090S in mouse models of acute and neuropathic pain. Pflugers Arch 2016; 468:193-9; http://dx.doi.org/10.1007/s00424-015-1733-1. PubMed DOI
Yu H, Seo JB, Jung SR, Koh DS, Hille B. Noradrenaline upregulates T-type calcium channels in rat pinealocytes. J Physiol 2015; 593:887-904; PMID:25504572; http://dx.doi.org/10.1113/jphysiol.2014.284208 PubMed DOI PMC
Sellak H, Zhou C, Liu B, Chen H, Lincoln TM, Wu S. Transcriptional regulation of α1H T-type calcium channel under hypoxia. Am J Physiol Cell Physiol 2014; 307:C648-56; PMID:25099734; http://dx.doi.org/10.1152/ajpcell.00210.2014 PubMed DOI PMC
van Loo KM, Schaub C, Pernhorst K, Yaari Y, Beck H, Schoch S, Becker AJ. Transcriptional regulation of T-type calcium channel CaV3.2: bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein-silencing transcription factor (REST). J Biol Chem 2012; 287:15489-501; PMID:22431737; http://dx.doi.org/10.1074/jbc.M111.310763 PubMed DOI PMC
Murbartián J, Arias JM, Perez-Reyes E. Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol 2004; 92:3399-407; PMID:15254077; http://dx.doi.org/10.1152/jn.00498.2004 PubMed DOI
Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW. Expression of T-type calcium channel splice variants in human glioma. Glia 2004; 48:112-9; PMID:15378657; http://dx.doi.org/10.1002/glia.20063 PubMed DOI
Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, et al.. A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 2009; 29:371-80; PMID:19144837; http://dx.doi.org/10.1523/JNEUROSCI.5295-08.2009 PubMed DOI PMC
David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP. Splice-variant changes of the CaV3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 2010; 4:375-89; PMID:20699644; http://dx.doi.org/10.4161/chan.4.5.12874 PubMed DOI PMC
Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ. T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 2003; 424:209-13; PMID:12853961; http://dx.doi.org/10.1038/nature01772 PubMed DOI
Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES. T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol 2010; 298:C1353-62; PMID:20147652; http://dx.doi.org/10.1152/ajpcell.00235.2009 PubMed DOI
García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, et al.. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 2014; 83:1144-58; PMID:25189210; http://dx.doi.org/10.1016/j.neuron.2014.07.036 PubMed DOI
Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P. Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci U S A 2015; 112:13705-10; PMID:26483470 PubMed PMC
Weiss N, Black SA, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 2013; 465:1159-70; PMID:23503728; http://dx.doi.org/10.1007/s00424-013-1259-3 PubMed DOI
Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, et al.. Reversal of neuropathic pain in diabetes by targeting glycosylation of CaV3.2 T-type calcium channels. Diabetes 2013; 62:3828-38; PMID:23835327; http://dx.doi.org/10.2337/db13-0813 PubMed DOI PMC
Fermini B, Nathan RD. Removal of sialic acid alters both T- and L-type calcium currents in cardiac myocytes. Am J Physiol 1991; 260:H735-43; PMID:2000969 PubMed
Yee HF, Weiss JN, Langer GA. Neuraminidase selectively enhances transient Ca2+ current in cardiac myocytes. Am J Physiol 1989; 256:C1267-72; PMID:2544097 PubMed
Lazniewska J, Weiss N. The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 2014; 167:67-114; PMID:25239698 PubMed
Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2012; 2:1269-301; PMID:23798301 PubMed
Penuela S, Lohman AW, Lai W, Gyenis L, Litchfield DW, Isakson BE, Laird DW. Diverse post-translational modifications of the pannexin family of channel-forming proteins. Channels (Austin) 2014; 8:124-30; PMID:24418849; http://dx.doi.org/10.4161/chan.27422 PubMed DOI PMC
Bennett E, Urcan MS, Tinkle SS, Koszowski AG, Levinson SR. Contribution of sialic acid to the voltage dependence of sodium channel gating. A possible electrostatic mechanism. J Gen Physiol 1997; 109:327-43; PMID:9089440; http://dx.doi.org/10.1085/jgp.109.3.327 PubMed DOI PMC
Zhang Y, Hartmann HA, Satin J. Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 1999; 171:195-207; PMID:10501828; http://dx.doi.org/10.1007/s002329900571 PubMed DOI
Watanabe I, Wang HG, Sutachan JJ, Zhu J, Recio-Pinto E, Thornhill WB. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. J Physiol 2003; 550:51-66; PMID:12879861; http://dx.doi.org/10.1113/jphysiol.2003.040337 PubMed DOI PMC
Watanabe I, Zhu J, Sutachan JJ, Gottschalk A, Recio-Pinto E, Thornhill WB. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Res 2007; 1144:1-18; PMID:17324383; http://dx.doi.org/10.1016/j.brainres.2007.01.092 PubMed DOI
Schwetz TA, Norring SA, Bennett ES. N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating. Biochim Biophys Acta 2010; 1798:367-75; PMID:19961828; http://dx.doi.org/10.1016/j.bbamem.2009.11.018 PubMed DOI
Kurejová M, Pavlovicová M, Lacinová L. Monovalent currents through the T-type Cav3.1 channels and their block by Mg2+. Gen Physiol Biophys 2007; 26:234-9 PubMed
Schwalbe RA, Wang Z, Wible BA, Brown AM. Potassium channel structure and function as reported by a single glycosylation sequon. J Biol Chem 1995; 270:15336-40; PMID:7797521; http://dx.doi.org/10.1074/jbc.270.25.15336 PubMed DOI
Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, Krag SS, Betenbaugh MJ. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 2014; 453:243-53; PMID:24971539; http://dx.doi.org/10.1016/j.bbrc.2014.06.067 PubMed DOI PMC
François A, Laffray S, Pizzoccaro A, Eschalier A, Bourinet E. T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 2014; 466:707-17; PMID:24590509; http://dx.doi.org/10.1007/s00424-014-1484-4 PubMed DOI
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140; PMID:24382884; http://dx.doi.org/10.1152/physrev.00023.2013 PubMed DOI
Cao XH, Byun HS, Chen SR, Pan HL. Diabetic neuropathy enhances voltage-activated Ca2+ channel activity and its control by M4 muscarinic receptors in primary sensory neurons. J Neurochem 2011; 119:594-603; PMID:21883220; http://dx.doi.org/10.1111/j.1471-4159.2011.07456.x PubMed DOI PMC
Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995; 15:3110-7; PMID:7722649 PubMed PMC
Zhang Y, Mori M, Burgess DL, Noebels JL. Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 2002; 22:6362-71; PMID:12151514 PubMed PMC
Zhang Y, Vilaythong AP, Yoshor D, Noebels JL. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma. J Neurosci 2004; 24:5239-48; PMID:15175394; http://dx.doi.org/10.1523/JNEUROSCI.0992-04.2004 PubMed DOI PMC
Cain SM, Snutch TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta 2013; 1828:1572-8; PMID:22885138; http://dx.doi.org/10.1016/j.bbamem.2012.07.028 PubMed DOI
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, et al.. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54:239-43; PMID:12891677; http://dx.doi.org/10.1002/ana.10607 PubMed DOI
Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004; 279:9681-4; PMID:14729682; http://dx.doi.org/10.1074/jbc.C400006200 PubMed DOI
T-type channels in neuropathic pain - Villain or victim?
Genetic T-type calcium channelopathies
Trafficking of neuronal calcium channels
A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane