Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression

. 2016 Nov ; 468 (11-12) : 1837-1851. [epub] 20160923

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27659162
Odkazy

PubMed 27659162
DOI 10.1007/s00424-016-1881-y
PII: 10.1007/s00424-016-1881-y
Knihovny.cz E-zdroje

T-type calcium channels are key contributors to neuronal physiology where they shape electrical activity of nerve cells and contribute to the release of neurotransmitters. Enhanced T-type channel expression has been causally linked to a number of pathological conditions including peripheral painful diabetic neuropathy. Recently, it was demonstrated that asparagine-linked glycosylation not only plays an essential role in regulating cell surface expression of Cav3.2 channels, but may also support glucose-dependent potentiation of T-type currents. However, the underlying mechanisms by which N-glycosylation and glucose levels modulate the expression of T-type channels remain elusive. In the present study, we show that site-specific N-glycosylation of Cav3.2 is essential to stabilize expression of the channel at the plasma membrane. In contrast, elevated external glucose concentration appears to potentiate intracellular forward trafficking of the channel to the cell surface, resulting in an increased steady-state expression of the channel protein at the plasma membrane. Collectively, our study indicates that glucose and N-glycosylation act in concert to control the expression of Cav3.2 channels, and that alteration of these mechanisms may contribute to the altered expression of T-type channels in pathological conditions.

Zobrazit více v PubMed

J Neurophysiol. 2008 Jun;99(6):3151-6 PubMed

Diabetes. 2009 Nov;58(11):2656-65 PubMed

Cell Calcium. 2006 Aug;40(2):175-90 PubMed

Pflugers Arch. 2014 Apr;466(4):645-60 PubMed

J Biol Chem. 2013 Oct 11;288(41):29238-46 PubMed

Glycobiology. 2012 May;22(5):714-24 PubMed

J Biotechnol. 2014 Jan 20;170:17-27 PubMed

Life Sci. 1999;64(17):1571-83 PubMed

J Biol Chem. 2004 Jul 9;279(28):29263-9 PubMed

Biochim Biophys Acta. 2013 Jul;1828(7):1572-8 PubMed

Biochem Biophys Res Commun. 2013 May 3;434(2):346-51 PubMed

Commun Integr Biol. 2012 Jul 1;5(4):377-80 PubMed

Pflugers Arch. 2013 Aug;465(8):1159-70 PubMed

J Neurosci. 1999 Jan 15;19(2):599-609 PubMed

J Cell Physiol. 2007 Feb;210(2):479-88 PubMed

J Biol Chem. 2013 Feb 1;288(5):3251-64 PubMed

FEBS J. 2012 Aug;279(15):2632-44 PubMed

Channels (Austin). 2016;10 (3):175-84 PubMed

Nat Rev Neurosci. 2008 Jan;9(1):36-45 PubMed

J Biol Chem. 2014 Dec 26;289(52):35849-57 PubMed

Neuron. 2014 Sep 3;83(5):1144-58 PubMed

PLoS One. 2015 May 14;10(5):e0127572 PubMed

Biochem J. 2008 Dec 1;416(2):211-8 PubMed

Mol Pain. 2015 May 20;11:29 PubMed

Biochim Biophys Acta. 2013 Jul;1828(7):1579-86 PubMed

J Diabetes Complications. 1997 Jul-Aug;11(4):236-42 PubMed

Spine (Phila Pa 1976). 2013 Mar 15;38(6):463-70 PubMed

Rev Physiol Biochem Pharmacol. 2014;167:67-114 PubMed

Cell. 2005 Dec 29;123(7):1307-21 PubMed

Channels (Austin). 2016 Sep 2;10 (5):346-354 PubMed

Pflugers Arch. 2014 Apr;466(4):661-75 PubMed

J Biol Chem. 2009 Apr 3;284(14):9215-24 PubMed

Cell. 2007 Apr 6;129(1):123-34 PubMed

J Neurosci. 2007 Mar 21;27(12):3305-16 PubMed

Physiol Rev. 2003 Jan;83(1):117-61 PubMed

Postgrad Med. 2012 Nov;124(6):90-7 PubMed

Mol Cells. 2010 Dec;30(6):497-506 PubMed

Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):448-62 PubMed

Diabetes. 2013 Nov;62(11):3828-38 PubMed

Pharmacol Rev. 2015 Oct;67(4):821-70 PubMed

J Biol Chem. 2012 Jan 20;287(4):2810-8 PubMed

Kidney Int Suppl. 2000 Sep;77:S13-8 PubMed

Biotechnol J. 2015 Jul;10(7):1051-66 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...