Transcriptomic analysis of glycan-processing genes in the dorsal root ganglia of diabetic mice and functional characterization on Cav3.2 channels
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32233724
PubMed Central
PMC7153791
DOI
10.1080/19336950.2020.1745406
Knihovny.cz E-zdroje
- Klíčová slova
- Cav3.2 channel, DRG neurons, Glycosylation, T-type channel, calcium channel, diabetes, transcriptome,
- MeSH
- buněčné linie MeSH
- elektrofyziologie metody MeSH
- experimentální diabetes mellitus metabolismus MeSH
- glykosylace MeSH
- lidé MeSH
- myši MeSH
- polysacharidy metabolismus MeSH
- spinální ganglia metabolismus MeSH
- transkriptom genetika MeSH
- vápníkové kanály - typ T genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Cacna1h protein, mouse MeSH Prohlížeč
- polysacharidy MeSH
- vápníkové kanály - typ T MeSH
Cav3.2 T-type calcium channels play an essential role in the transmission of peripheral nociception in the dorsal root ganglia (DRG) and alteration of Cav3.2 expression is associated with the development of peripheral painful diabetic neuropathy (PDN). Several studies have previously documented the role of glycosylation in the expression and functioning of Cav3.2 and suggested that altered glycosylation of the channel may contribute to the aberrant expression of the channel in diabetic conditions. In this study, we aimed to analyze the expression of glycan-processing genes in DRG neurons from a leptin-deficient genetic mouse model of diabetes (db/db). Transcriptomic analysis revealed that several glycan-processing genes encoding for glycosyltransferases and sialic acid-modifying enzymes were upregulated in diabetic conditions. Functional analysis of these enzymes on recombinant Cav3.2 revealed an unexpected loss-of-function of the channel. Collectively, our data indicate that diabetes is associated with an alteration of the glycosylation machinery in DRG neurons. However, individual action of these enzymes when tested on recombinant Cav3.2 cannot explain the observed upregulation of T-type channels under diabetic conditions.Abbreviations: Galnt16: Polypeptide N-acetylgalactosaminyltransferase 16; B3gnt8: UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 8; B4galt1: Beta-1,4-galactosyltransferase 1; St6gal1: Beta-galactoside alpha-2,6-sialyltransferase 1; Neu3: Sialidase-3.
3rd Faculty of Medicine Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Jagodic MM, Pathirathna S, Nelson MT, et al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci. 2007;27:3305–3316. PubMed PMC
Obradovic AL, Hwang SM, Scarpa J, et al. CaV3.2 T-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy. PLoS One. 2014;9:e91467. PubMed PMC
Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, et al. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain. 2015;11:29. PubMed PMC
Latham JR, Pathirathna S, Jagodic MM, et al. Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes. 2009;58:2656–2665. PubMed PMC
Orestes P, Osuru HP, McIntire WE, et al. Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels. Diabetes. 2013;62:3828–3838. PubMed PMC
Lazniewska J, Weiss N.. The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol. 2014;167:67–114. PubMed
Lazniewska J, Weiss N. Glycosylation of voltage-gated calcium channels in health and disease. Biochim Biophys Acta Biomembr. 2017;1859:662–668. PubMed
Weiss N, Black SA, Bladen C, et al. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch. 2013;465:1159–1170. PubMed
Lazniewska J, Rzhepetskyy Y, Zhang FX, et al. Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. Pflugers Arch. 2016;468:1837–1851. PubMed
Dubel SJ, Altier C, Chaumont S, et al. Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem. 2004;279:29263–29269. PubMed
Carter MT, McMillan HJ, Tomin A, et al. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin). 2019;13:153–161. PubMed PMC
Raman J, Guan Y, Perrine CL, et al. UDP-N-acetyl-α-D-galactosamine:polypeptideN-acetylgalactosaminyltransferases: completion of the family tree. Glycobiology. 2012;22:768–777. PubMed PMC
Ishida H, Togayachi A, Sakai T, et al. A novel beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett. 2005;579:71–78. PubMed
Ramasamy V, Ramakrishnan B, Boeggeman E, et al. Oligosaccharide preferences of beta1,4-galactosyltransferase-I: crystal structures of Met340His mutant of human beta1,4-galactosyltransferase-I with a pentasaccharide and trisaccharides of the N-glycan moiety. J Mol Biol. 2005;353:53–67. PubMed
Kuhn B, Benz J, Greif M, et al. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans. Acta Crystallogr D Biol Crystallogr. 2013;69:1826–1838. PubMed
Monti E, Bassi MT, Papini N, et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J. 2000;349:343–351. PubMed PMC
Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol. 2012;2:1269–1301. PubMed
Jagodic MM, Pathirathna S, Joksovic PM, et al. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol. 2008;99:3151–3156. PubMed PMC
Wen XJ, Xu SY, Chen ZX, et al. The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology. 2010;85:295–300. PubMed
Yue J, Liu L, Liu Z, et al. Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine (Phila Pa 1976). 1976;2013(38):463–470. PubMed
Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain. 2004;109:150–161. PubMed
Okubo K, Takahashi T, Sekiguchi F, et al. Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience. 2011;188:148–156. PubMed
Li Y, Tatsui CE, Rhines LD, et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain. 2017;158:417–429. PubMed PMC
Watanabe M, Ueda T, Shibata Y, et al. Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS One. 2015;10:e0127572. PubMed PMC
Sekiguchi F, Tsubota M, Kawabata A. Involvement of voltage-gated calcium channels in inflammation and inflammatory pain. Biol Pharm Bull. 2018;41:1127–1134. PubMed
García-Caballero A, Gadotti VM, Stemkowski P, et al. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron. 2014;83:1144–1158. PubMed
Garcia-Caballero A, Zhang FX, Chen L, et al. SUMOylation regulates USP5-Cav3.2 calcium channel interactions. Mol Brain. 2019;12:73. PubMed PMC
Gaifullina AS, Lazniewska J, Gerasimova EV, et al. A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain. 2019;160:2798–2810. PubMed
Gomez K, Calderón-Rivera A, Sandoval A, et al. Cdk5-dependent phosphorylation of CaV3.2 T-type channels: possible role in nerve ligation-induced neuropathic allodynia and the compound action potential in primary afferent C fibers. J Neurosci. 2020;40:283–296. PubMed PMC
Qian X, Li X, Ilori TO, et al. RNA-seq analysis of glycosylation related gene expression in STZ-induced diabetic rat kidney inner medulla. Front Physiol. 2015;6:274. PubMed PMC
Peng XQ, Zhang XL, Fang Y, et al. Sialic acid contributes to hyperexcitability of dorsal root ganglion neurons in rats with peripheral nerve injury. Brain Res. 2004;1026:185–193. PubMed
Seko A. Complex formation of glycosyltransferases and their biological significance. Trends Glycosci Glycotechnol. 2006;18: 209–230.
Seko A, Yamashita K. Activation of beta1,3-N-acetylglucosaminyltransferase-2 (beta3Gn-T2) by beta3Gn-T8. Possible involvement of beta3Gn-T8 in increasing poly-N-acetyllactosamine chains in differentiated HL-60 cells. J Biol Chem. 2008;283:33094–33100. PubMed PMC
The T-type calcium channelosome