Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33864790
PubMed Central
PMC8390799
DOI
10.1016/j.bpj.2021.04.005
PII: S0006-3495(21)00300-3
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána MeSH
- fosfolipidy MeSH
- lipidové dvojvrstvy * MeSH
- membránové proteiny MeSH
- peptidy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy MeSH
- lipidové dvojvrstvy * MeSH
- membránové proteiny MeSH
- peptidy * MeSH
Cell membranes are phospholipid bilayers with a large number of embedded transmembrane proteins. Some of these proteins, such as scramblases, have properties that facilitate lipid flip-flop from one membrane leaflet to another. Scramblases and similar transmembrane proteins could also affect the translocation of other amphiphilic molecules, including cell-penetrating or antimicrobial peptides. We studied the effect of transmembrane proteins on the translocation of amphiphilic peptides through the membrane. Using two very different models, we consistently demonstrate that transmembrane proteins with a hydrophilic patch enhance the translocation of amphiphilic peptides by stabilizing the peptide in the membrane. Moreover, there is an optimum amphiphilicity because the peptide could become overstabilized in the transmembrane state, in which the peptide-protein dissociation is hampered, limiting the peptide translocation. The presence of scramblases and other proteins with similar properties could be exploited for more efficient transport into cells. The described principles could also be utilized in the design of a drug-delivery system by the addition of a translocation-enhancing peptide that would integrate into the membrane.
Zobrazit více v PubMed
Derakhshankhah H., Jafari S. Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed. Pharmacother. 2018;108:1090–1096. PubMed
Werner M., Sommer J.-U., Baulin V.A. Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability. Soft Matter. 2012;8:11714–11722.
Bechara C., Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702. PubMed
Henriques S.T., Melo M.N., Castanho M.A.R.B. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 2006;399:1–7. PubMed PMC
Wang J., Dou X., Shan A. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019;39:831–859. PubMed
Guidotti G., Brambilla L., Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 2017;38:406–424. PubMed
Splith K., Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J. 2011;40:387–397. PubMed
Brožek R., Kabelka I., Vácha R. Effect of helical kink on peptide translocation across phospholipid membranes. J. Phys. Chem. B. 2020;124:5940–5947. PubMed
Avci F.G., Akbulut B.S., Ozkirimli E. Membrane active peptides and their biophysical characterization. Biomolecules. 2018;8:77. PubMed PMC
Bethel N.P., Grabe M. Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl. Acad. Sci. USA. 2016;113:14049–14054. PubMed PMC
Williamson P. Phospholipid scramblases. Lipid Insights. 2016;8(Suppl 1):41–44. PubMed PMC
Malvezzi M., Andra K.K., Accardi A. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc. Natl. Acad. Sci. USA. 2018;115:E7033–E7042. PubMed PMC
Lee B.-C., Khelashvili G., Accardi A. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat. Commun. 2018;9:3251. PubMed PMC
Metropolis N., Rosenbluth A.W., Teller E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953;21:1087–1092.
Cooke I.R., Kremer K., Deserno M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005;72:011506. PubMed
Vácha R., Frenkel D. Relation between molecular shape and the morphology of self-assembling aggregates: a simulation study. Biophys. J. 2011;101:1432–1439. PubMed PMC
Wang F., Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 2001;86:2050–2053. PubMed
Kabelka I., Vácha R. Optimal hydrophobicity and reorientation of amphiphilic peptides translocating through membrane. Biophys. J. 2018;115:1045–1054. PubMed PMC
Abraham M.J., Murtola T., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
Marrink S.J., Risselada H.J., de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. PubMed
Monticelli L., Kandasamy S.K., Marrink S.-J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008;4:819–834. PubMed
de Jong D.H., Singh G., Marrink S.J. Improved parameters for the Martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. PubMed
Javanainen M., Martinez-Seara H., Vattulainen I. Excessive aggregation of membrane proteins in the Martini model. PLoS One. 2017;12:e0187936. PubMed PMC
Šali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. PubMed
Gautier R., Douguet D., Drin G. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics. 2008;24:2101–2102. PubMed
Jo S., Kim T., Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. PubMed
Berendsen H.J.C., Postma J.P.M., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690.
Parrinello M., Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199.
Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.
Torrie G., Valleau J. Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 1974;28:578–581.
Torrie G., Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 1977;23:187–199.
Kumar S., Rosenberg J.M., Kollman P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021.
Souaille M., Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001;135:40–57.
Hub J.S., de Groot B.L., van der Spoel D. g_wham–A free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 2010;6:3713–3720.
Illya G., Deserno M. Coarse-grained simulation studies of peptide-induced pore formation. Biophys. J. 2008;95:4163–4173. PubMed PMC
Chetwynd A., Wee C.L., Sansom M.S. The energetics of transmembrane helix insertion into a lipid bilayer. Biophys. J. 2010;99:2534–2540. PubMed PMC
Irudayam S.J., Berkowitz M.L. Binding and reorientation of melittin in a POPC bilayer: computer simulations. Biochim. Biophys. Acta. 2012;1818:2975–2981. PubMed
White S.H., Wimley W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 1999;28:319–365. PubMed
Cooke I.R., Deserno M. Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. J. Chem. Phys. 2005;123:224710. PubMed
Bennett W.F., Tieleman D.P. Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J. Chem. Theory Comput. 2011;7:2981–2988. PubMed
Morra G., Razavi A.M., Khelashvili G. Mechanisms of lipid scrambling by the G protein-coupled receptor opsin. Structure. 2018;26:356–367.e3. PubMed PMC
Optimizing properties of translocation-enhancing transmembrane proteins
Peptide translocation across asymmetric phospholipid membranes
FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers