Peptide translocation across asymmetric phospholipid membranes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38356262
PubMed Central
PMC10995401
DOI
10.1016/j.bpj.2024.02.006
PII: S0006-3495(24)00105-X
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána chemie MeSH
- fosfolipidy * MeSH
- lipidové dvojvrstvy * chemie MeSH
- peptidy MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy * MeSH
- lipidové dvojvrstvy * MeSH
- peptidy MeSH
The transport of molecules across cell membranes is vital for proper cell function and effective drug delivery. While most cell membranes naturally possess an asymmetric lipid composition, research on membrane transport predominantly uses symmetric lipid membranes. The permeation through the asymmetric membrane is then calculated as a sum of the inverse permeabilities of leaflets from symmetric bilayers. In this study, we examined how two types of amphiphilic molecules translocate across both asymmetric and symmetric membranes. Using computer simulations with both coarse-grained and atomistic force fields, we calculated the free energy profiles for the passage of model amphiphilic peptides and a lipid across various membranes. Our results consistently demonstrate that while the free energy profiles for asymmetric membranes with a small differential stress concur with symmetric ones in the region of lipid headgroups, the profiles differ around the center of the membrane. In this region, the free energy for the asymmetric membrane transitions between the profiles for two symmetric membranes. In addition, we show that peptide permeability through an asymmetric membrane cannot always be predicted from the permeabilities of the symmetric membranes. This indicates that using symmetric membranes falls short in providing an accurate depiction of peptide translocation across asymmetric membranes.
Zobrazit více v PubMed
Wang J., Dou X., et al. Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019;39:831–859. doi: 10.1002/med.21542. PubMed DOI
Bastos P., Trindade F., et al. Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med. Res. Rev. 2018;38:101–146. doi: 10.1002/med.21435. PubMed DOI PMC
Guidotti G., Brambilla L., Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017;38:406–424. https://linkinghub.elsevier.com/retrieve/pii/S0165614717300172 PubMed
Tashima T. Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett. 2017;27:121–130. https://linkinghub.elsevier.com/retrieve/pii/S0960894X16312562 PubMed
Devaux P.F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991;30:1163–1173. doi: 10.1021/bi00219a001. PubMed DOI
Lorent J.H., Levental K.R., et al. Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020;16:644–652. http://www.nature.com/articles/s41589-020-0529-6 PubMed PMC
Doktorova M., Symons J.L., et al. Levental I. Cell Membranes Sustain Phospholipid Imbalance Via Cholesterol Asymmetry. bioRxiv. 2023 https://www.biorxiv.org/content/early/2023/07/31/2023.07.30.551157 Preprint at.
Brožek R., Kabelka I., Vácha R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J. Phys. Chem. B. 2020;124:5940–5947. doi: 10.1021/acs.jpcb.0c03291. PubMed DOI
Bartoš L., Kabelka I., Vácha R. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins. Biophys. J. 2021;120:2296–2305. https://www.sciencedirect.com/science/article/pii/S0006349521003003 PubMed PMC
Cardenas A.E., Drexler C.I., et al. Elber R. Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation. J. Phys. Chem. B. 2022;126:2834–2849. doi: 10.1021/acs.jpcb.1c10966. PubMed DOI PMC
Ulmschneider J.P. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores. Biophys. J. 2017;113:73–81. https://linkinghub.elsevier.com/retrieve/pii/S0006349517306239 PubMed PMC
Irudayam S.J., Berkowitz M.L. Binding and reorientation of melittin in a POPC bilayer: Computer simulations. Biochim. Biophys. Acta Biomembr. 2012;1818:2975–2981. https://linkinghub.elsevier.com/retrieve/pii/S0005273612002581 PubMed
Wheaten S.A., Ablan F.D.O., et al. Almeida P.F. Translocation of Cationic Amphipathic Peptides across the Membranes of Pure Phospholipid Giant Vesicles. J. Am. Chem. Soc. 2013;135:16517–16525. doi: 10.1021/ja407451c. PubMed DOI PMC
Thorén P.E.G., Persson D., et al. Nordén B. Membrane Binding and Translocation of Cell-Penetrating Peptides. Biochemistry. 2004;43:3471–3489. doi: 10.1021/bi0360049. PubMed DOI
Marquardt D., Geier B., Pabst G. Asymmetric Lipid Membranes: Towards More Realistic Model Systems. Membranes. 2015;5:180–196. http://www.mdpi.com/2077-0375/5/2/180 PubMed PMC
Gurtovenko A.A., Vattulainen I. Lipid Transmembrane Asymmetry and Intrinsic Membrane Potential: Two Sides of the Same Coin. J. Am. Chem. Soc. 2007;129:5358–5359. doi: 10.1021/ja070949m. PubMed DOI
Vácha R., Berkowitz M.L., Jungwirth P. Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects. Biophys. J. 2009;96:4493–4501. https://linkinghub.elsevier.com/retrieve/pii/S0006349509007437 PubMed PMC
Gurtovenko A.A., Lyulina A.S. Electroporation of Asymmetric Phospholipid Membranes. J. Phys. Chem. B. 2014;118:9909–9918. doi: 10.1021/jp5028355. PubMed DOI
Marrink S.J., Corradi V., et al. Sansom M.S.P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019;119:6184–6226. doi: 10.1021/acs.chemrev.8b00460. PubMed DOI PMC
Hossein A., Deserno M. Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes. Biophys. J. 2020;118:624–642. https://linkinghub.elsevier.com/retrieve/pii/S0006349519343929 PubMed PMC
Pirhadi E., Vanegas J.M., et al. Yong X. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. J. Chem. Theor. Comput. 2023;19:363–372. doi: 10.1021/acs.jctc.2c01026. PubMed DOI
Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059
Souza P.C.T., Alessandri R., et al. Marrink S.J. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021;18:382–388. http://www.nature.com/articles/s41592-021-01098-3 PubMed
Pajtinka P., Vácha R. Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes. J. Phys. Chem. Lett. 2024;15:175–179. doi: 10.1021/acs.jpclett.3c02785. PubMed DOI PMC
Šali A., Blundell T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Berendsen H.J.C., Postma J.P.M., et al. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Parrinello M., Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980;45:1196–1199. doi: 10.1103/physrevlett.45.1196. DOI
Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126 doi: 10.1063/1.2408420. PubMed DOI
Kim H., Fábián B., Hummer G. Neighbor List Artifacts in Molecular Dynamics Simulations. J. Chem. Theor. Comput. 2023;19:8919–8929. doi: 10.1021/acs.jctc.3c00777. PubMed DOI PMC
Torrie G.M., Valleau J.P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 1974;28:578–581.
Torrie G., Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23:187–199. https://linkinghub.elsevier.com/retrieve/pii/0021999177901218
Kumar S., Rosenberg J.M., et al. Kollman P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI
Souaille M., Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001;135:40–57. https://linkinghub.elsevier.com/retrieve/pii/S0010465500002150
Huang J., Rauscher S., et al. MacKerell A.D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. http://www.nature.com/articles/nmeth.4067 PubMed PMC
Jo S., Kim T., et al. Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Essmann U., Perera L., et al. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. https://pubs.aip.org/aip/jcp/article/103/19/8577-8593/180219
Hess B., Bekker H., et al. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Tribello G.A., Bonomi M., et al. Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Fukunishi H., Watanabe O., Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 2002;116:9058–9067. doi: 10.1063/1.1472510. DOI
Vanegas J.M., Torres-Sánchez A., Arroyo M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. J. Chem. Theor. Comput. 2014;10:691–702. doi: 10.1021/ct4008926. PubMed DOI
Kabelka I., Vácha R. Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane. Biophys. J. 2018;115:1045–1054. doi: 10.1016/j.bpj.2018.08.012. PubMed DOI PMC
Chetwynd A., Wee C.L., et al. Sansom M.S.P. The Energetics of Transmembrane Helix Insertion into a Lipid Bilayer. Biophys. J. 2010;99:2534–2540. https://linkinghub.elsevier.com/retrieve/pii/S0006349510009689 PubMed PMC
Negrete H.O., Rivers R.L., et al. Zeidel M.L. Individual Leaflets of a Membrane Bilayer Can Independently Regulate Permeability. J. Biol. Chem. 1996;271:11627–11630. https://linkinghub.elsevier.com/retrieve/pii/S0021925818825960 PubMed
Krylov A.V., Pohl P., et al. Hill W.G. Water Permeability of Asymmetric Planar Lipid Bilayers: Leaflets of Different Composition Offer Independent and Additive Resistances to Permeation. J. Gen. Physiol. 2001;118:333–340. PubMed PMC
Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2
Optimizing properties of translocation-enhancing transmembrane proteins