Peptide translocation across asymmetric phospholipid membranes

. 2024 Mar 19 ; 123 (6) : 693-702. [epub] 20240215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38356262
Odkazy

PubMed 38356262
PubMed Central PMC10995401
DOI 10.1016/j.bpj.2024.02.006
PII: S0006-3495(24)00105-X
Knihovny.cz E-zdroje

The transport of molecules across cell membranes is vital for proper cell function and effective drug delivery. While most cell membranes naturally possess an asymmetric lipid composition, research on membrane transport predominantly uses symmetric lipid membranes. The permeation through the asymmetric membrane is then calculated as a sum of the inverse permeabilities of leaflets from symmetric bilayers. In this study, we examined how two types of amphiphilic molecules translocate across both asymmetric and symmetric membranes. Using computer simulations with both coarse-grained and atomistic force fields, we calculated the free energy profiles for the passage of model amphiphilic peptides and a lipid across various membranes. Our results consistently demonstrate that while the free energy profiles for asymmetric membranes with a small differential stress concur with symmetric ones in the region of lipid headgroups, the profiles differ around the center of the membrane. In this region, the free energy for the asymmetric membrane transitions between the profiles for two symmetric membranes. In addition, we show that peptide permeability through an asymmetric membrane cannot always be predicted from the permeabilities of the symmetric membranes. This indicates that using symmetric membranes falls short in providing an accurate depiction of peptide translocation across asymmetric membranes.

Zobrazit více v PubMed

Wang J., Dou X., et al. Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019;39:831–859. doi: 10.1002/med.21542. PubMed DOI

Bastos P., Trindade F., et al. Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med. Res. Rev. 2018;38:101–146. doi: 10.1002/med.21435. PubMed DOI PMC

Guidotti G., Brambilla L., Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017;38:406–424. https://linkinghub.elsevier.com/retrieve/pii/S0165614717300172 PubMed

Tashima T. Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett. 2017;27:121–130. https://linkinghub.elsevier.com/retrieve/pii/S0960894X16312562 PubMed

Devaux P.F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991;30:1163–1173. doi: 10.1021/bi00219a001. PubMed DOI

Lorent J.H., Levental K.R., et al. Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020;16:644–652. http://www.nature.com/articles/s41589-020-0529-6 PubMed PMC

Doktorova M., Symons J.L., et al. Levental I. Cell Membranes Sustain Phospholipid Imbalance Via Cholesterol Asymmetry. bioRxiv. 2023 https://www.biorxiv.org/content/early/2023/07/31/2023.07.30.551157 Preprint at.

Brožek R., Kabelka I., Vácha R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J. Phys. Chem. B. 2020;124:5940–5947. doi: 10.1021/acs.jpcb.0c03291. PubMed DOI

Bartoš L., Kabelka I., Vácha R. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins. Biophys. J. 2021;120:2296–2305. https://www.sciencedirect.com/science/article/pii/S0006349521003003 PubMed PMC

Cardenas A.E., Drexler C.I., et al. Elber R. Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation. J. Phys. Chem. B. 2022;126:2834–2849. doi: 10.1021/acs.jpcb.1c10966. PubMed DOI PMC

Ulmschneider J.P. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores. Biophys. J. 2017;113:73–81. https://linkinghub.elsevier.com/retrieve/pii/S0006349517306239 PubMed PMC

Irudayam S.J., Berkowitz M.L. Binding and reorientation of melittin in a POPC bilayer: Computer simulations. Biochim. Biophys. Acta Biomembr. 2012;1818:2975–2981. https://linkinghub.elsevier.com/retrieve/pii/S0005273612002581 PubMed

Wheaten S.A., Ablan F.D.O., et al. Almeida P.F. Translocation of Cationic Amphipathic Peptides across the Membranes of Pure Phospholipid Giant Vesicles. J. Am. Chem. Soc. 2013;135:16517–16525. doi: 10.1021/ja407451c. PubMed DOI PMC

Thorén P.E.G., Persson D., et al. Nordén B. Membrane Binding and Translocation of Cell-Penetrating Peptides. Biochemistry. 2004;43:3471–3489. doi: 10.1021/bi0360049. PubMed DOI

Marquardt D., Geier B., Pabst G. Asymmetric Lipid Membranes: Towards More Realistic Model Systems. Membranes. 2015;5:180–196. http://www.mdpi.com/2077-0375/5/2/180 PubMed PMC

Gurtovenko A.A., Vattulainen I. Lipid Transmembrane Asymmetry and Intrinsic Membrane Potential: Two Sides of the Same Coin. J. Am. Chem. Soc. 2007;129:5358–5359. doi: 10.1021/ja070949m. PubMed DOI

Vácha R., Berkowitz M.L., Jungwirth P. Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects. Biophys. J. 2009;96:4493–4501. https://linkinghub.elsevier.com/retrieve/pii/S0006349509007437 PubMed PMC

Gurtovenko A.A., Lyulina A.S. Electroporation of Asymmetric Phospholipid Membranes. J. Phys. Chem. B. 2014;118:9909–9918. doi: 10.1021/jp5028355. PubMed DOI

Marrink S.J., Corradi V., et al. Sansom M.S.P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019;119:6184–6226. doi: 10.1021/acs.chemrev.8b00460. PubMed DOI PMC

Hossein A., Deserno M. Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes. Biophys. J. 2020;118:624–642. https://linkinghub.elsevier.com/retrieve/pii/S0006349519343929 PubMed PMC

Pirhadi E., Vanegas J.M., et al. Yong X. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. J. Chem. Theor. Comput. 2023;19:363–372. doi: 10.1021/acs.jctc.2c01026. PubMed DOI

Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059

Souza P.C.T., Alessandri R., et al. Marrink S.J. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021;18:382–388. http://www.nature.com/articles/s41592-021-01098-3 PubMed

Pajtinka P., Vácha R. Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes. J. Phys. Chem. Lett. 2024;15:175–179. doi: 10.1021/acs.jpclett.3c02785. PubMed DOI PMC

Šali A., Blundell T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Berendsen H.J.C., Postma J.P.M., et al. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Parrinello M., Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980;45:1196–1199. doi: 10.1103/physrevlett.45.1196. DOI

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126 doi: 10.1063/1.2408420. PubMed DOI

Kim H., Fábián B., Hummer G. Neighbor List Artifacts in Molecular Dynamics Simulations. J. Chem. Theor. Comput. 2023;19:8919–8929. doi: 10.1021/acs.jctc.3c00777. PubMed DOI PMC

Torrie G.M., Valleau J.P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 1974;28:578–581.

Torrie G., Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23:187–199. https://linkinghub.elsevier.com/retrieve/pii/0021999177901218

Kumar S., Rosenberg J.M., et al. Kollman P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI

Souaille M., Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001;135:40–57. https://linkinghub.elsevier.com/retrieve/pii/S0010465500002150

Huang J., Rauscher S., et al. MacKerell A.D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. http://www.nature.com/articles/nmeth.4067 PubMed PMC

Jo S., Kim T., et al. Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Essmann U., Perera L., et al. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. https://pubs.aip.org/aip/jcp/article/103/19/8577-8593/180219

Hess B., Bekker H., et al. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Tribello G.A., Bonomi M., et al. Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI

Fukunishi H., Watanabe O., Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 2002;116:9058–9067. doi: 10.1063/1.1472510. DOI

Vanegas J.M., Torres-Sánchez A., Arroyo M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. J. Chem. Theor. Comput. 2014;10:691–702. doi: 10.1021/ct4008926. PubMed DOI

Kabelka I., Vácha R. Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane. Biophys. J. 2018;115:1045–1054. doi: 10.1016/j.bpj.2018.08.012. PubMed DOI PMC

Chetwynd A., Wee C.L., et al. Sansom M.S.P. The Energetics of Transmembrane Helix Insertion into a Lipid Bilayer. Biophys. J. 2010;99:2534–2540. https://linkinghub.elsevier.com/retrieve/pii/S0006349510009689 PubMed PMC

Negrete H.O., Rivers R.L., et al. Zeidel M.L. Individual Leaflets of a Membrane Bilayer Can Independently Regulate Permeability. J. Biol. Chem. 1996;271:11627–11630. https://linkinghub.elsevier.com/retrieve/pii/S0021925818825960 PubMed

Krylov A.V., Pohl P., et al. Hill W.G. Water Permeability of Asymmetric Planar Lipid Bilayers: Leaflets of Different Composition Offer Independent and Additive Resistances to Permeation. J. Gen. Physiol. 2001;118:333–340. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2

. 2024 Sep 05 ; 128 (35) : 8469-8476. [epub] 20240828

Optimizing properties of translocation-enhancing transmembrane proteins

. 2024 May 21 ; 123 (10) : 1240-1252. [epub] 20240413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...