Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30177443
PubMed Central
PMC6139821
DOI
10.1016/j.bpj.2018.08.012
PII: S0006-3495(18)30964-0
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- hydrofobní a hydrofilní interakce * MeSH
- konformace proteinů MeSH
- metoda Monte Carlo MeSH
- peptidy chemie metabolismus MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy MeSH
Cell-penetrating and some antimicrobial peptides can translocate across lipid bilayers without disrupting the membrane structure. However, the molecular properties required for efficient translocation are not fully understood. We employed the Metropolis Monte Carlo method together with coarse-grained models to systematically investigate free-energy landscapes associated with the translocation of secondary amphiphilic peptides. We studied α-helical peptides with different length, amphiphilicity, and distribution of hydrophobic content and found a common translocation path consisting of adsorption, tilting, and insertion. In the adsorbed state, the peptides are parallel to the membrane plane, whereas, in the inserted state, the peptides are perpendicular to the membrane. Our simulations demonstrate that, for all tested peptides, there is an optimal ratio of hydrophilic/hydrophobic content at which the peptides cross the membrane the easiest. Moreover, we show that the hydrophobicity of peptide termini has an important effect on the translocation barrier. These results provide general guidance to optimize peptides for use as carriers of molecular cargos or as therapeutics themselves.
Zobrazit více v PubMed
Henriques S.T., Melo M.N., Castanho M.A. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 2006;399:1–7. PubMed PMC
Matsuzaki K., Sugishita K., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995;34:3423–3429. PubMed
Park C.B., Yi K.S., Kim S.C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. USA. 2000;97:8245–8250. PubMed PMC
Yang S.T., Lee J.Y., Kim J.I. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS J. 2006;273:4040–4054. PubMed
Park C.B., Kim M.S., Kim S.C. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 1996;218:408–413. PubMed
Park C.B., Kim H.S., Kim S.C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 1998;244:253–257. PubMed
Scocchi M., Mardirossian M., Benincasa M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr. Top. Med. Chem. 2016;16:76–88. PubMed
Zorko M., Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 2005;57:529–545. PubMed
Bendifallah N., Rasmussen F.W., Koppelhus U. Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA) Bioconjug. Chem. 2006;17:750–758. PubMed
Crombez L., Aldrian-Herrada G., Divita G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther. 2009;17:95–103. PubMed PMC
Almeida P.F., Pokorny A. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry. 2009;48:8083–8093. PubMed PMC
Yandek L.E., Pokorny A., Almeida P.F. Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys. J. 2007;92:2434–2444. PubMed PMC
Wimley W.C., White S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 1996;3:842–848. PubMed
Shinoda W. Permeability across lipid membranes. Biochim. Biophys. Acta. 2016;1858:2254–2265. PubMed
Neale C., Pomès R. Sampling errors in free energy simulations of small molecules in lipid bilayers. Biochim. Biophys. Acta. 2016;1858:2539–2548. PubMed
Menichetti R., Kanekal K.H., Bereau T. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force. J. Chem. Phys. 2017;147:125101. PubMed
Werner M., Sommer J.-U., Baulin V.A. Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability. Soft Matter. 2012;8:11714–11722.
Ding H.M., Ma Y.Q. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery. Small. 2015;11:1055–1071. PubMed
Yang K., Ma Y.Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 2010;5:579–583. PubMed
Ulmschneider M.B., Ulmschneider J.P., White S.H. Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat. Commun. 2014;5:4863. PubMed PMC
Chetwynd A., Wee C.L., Sansom M.S. The energetics of transmembrane helix insertion into a lipid bilayer. Biophys. J. 2010;99:2534–2540. PubMed PMC
Bond P.J., Wee C.L., Sansom M.S. Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry. 2008;47:11321–11331. PubMed
Rychkova A., Vicatos S., Warshel A. On the energetics of translocon-assisted insertion of charged transmembrane helices into membranes. Proc. Natl. Acad. Sci. USA. 2010;107:17598–17603. PubMed PMC
Jo S., Rui H., Im W. Cholesterol flip-flop: insights from free energy simulation studies. J. Phys. Chem. B. 2010;114:13342–13348. PubMed
Choubey A., Kalia R.K., Vashishta P. Cholesterol translocation in a phospholipid membrane. Biophys. J. 2013;104:2429–2436. PubMed PMC
Ulmschneider J.P. Charged antimicrobial peptides can translocate across membranes without forming channel-like pores. Biophys. J. 2017;113:73–81. PubMed PMC
Mizuguchi T., Matubayasi N. Free-energy analysis of peptide binding in lipid membrane using all-atom molecular dynamics simulation combined with theory of solutions. J. Phys. Chem. B. 2018;122:3219–3229. PubMed
Gysin B., Schwyzer R. Hydrophobic and electrostatic interactions between adrenocorticotropin-(1-24) -tetracosapeptide and lipid vesicles. Amphiphilic primary structures. Biochemistry. 1984;23:1811–1818. PubMed
Ablan F.D.O., Spaller B.L., Almeida P.F. Charge distribution fine-tunes the translocation of α-helical amphipathic peptides across membranes. Biophys. J. 2016;111:1738–1749. PubMed PMC
Cooke I.R., Kremer K., Deserno M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005;72:011506. PubMed
Vácha R., Frenkel D. Relation between molecular shape and the morphology of self-assembling aggregates: a simulation study. Biophys. J. 2011;101:1432–1439. PubMed PMC
Wang F., Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 2001;86:2050–2053. PubMed
Abraham M.J., Murtola T., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.
Pall S., Abraham M.J., Lindahl E. Springer; 2014. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In International Conference on Exascale Applications and Software; pp. 3–27.
Lindorff-Larsen K., Piana S., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. PubMed PMC
Sorin E.J., Pande V.S. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J. 2005;88:2472–2493. PubMed PMC
Jämbeck J.P., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. PubMed PMC
Jämbeck J.P., Lyubartsev A.P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 2012;8:2938–2948. PubMed
Best R.B., Zhu X., Mackerell A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 2012;8:3257–3273. PubMed PMC
Klauda J.B., Venable R.M., Pastor R.W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. PubMed PMC
Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81:511–519.
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268.
Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985;31:1695–1697. PubMed
Parrinello M., Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196.
Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.
Essmann U., Perera L., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.
Allen M.P., Tildesley D.J. Oxford University Press; Oxford, UK: 2017. Computer Simulation of Liquids.
Jo S., Kim T., Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed
Duque D., Li X.-j., Schick M. Molecular theory of hydrophobic mismatch between lipids and peptides. J. Chem. Phys. 2002;116:10478–10484.
Park S.H., Opella S.J. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J. Mol. Biol. 2005;350:310–318. PubMed
Wu Y., Huang H.W., Olah G.A. Method of oriented circular dichroism. Biophys. J. 1990;57:797–806. PubMed PMC
Bürck J., Wadhwani P., Ulrich A.S. Oriented circular dichroism: a method to characterize membrane-active peptides in oriented lipid bilayers. Acc. Chem. Res. 2016;49:184–192. PubMed
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta. 1999;1462:157–183. PubMed
Jaud S., Fernández-Vidal M., White S.H. Insertion of short transmembrane helices by the Sec61 translocon. Proc. Natl. Acad. Sci. USA. 2009;106:11588–11593. PubMed PMC
Sudheendra U.S., Bechinger B. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy. Biochemistry. 2005;44:12120–12127. PubMed
Vogt B., Ducarme P., Bechinger B. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling. Biophys. J. 2000;79:2644–2656. PubMed PMC
Wang G., Li X., Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–D1093. PubMed PMC
Wang G. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr. Biotechnol. 2012;1:72–79. PubMed PMC
Ladokhin A.S., White S.H. Folding of amphipathic α-helices on membranes: energetics of helix formation by melittin. J. Mol. Biol. 1999;285:1363–1369. PubMed
Optimizing properties of translocation-enhancing transmembrane proteins
Peptide translocation across asymmetric phospholipid membranes
Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins
Effect of helical kink in antimicrobial peptides on membrane pore formation
Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions