Optimizing properties of translocation-enhancing transmembrane proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38615194
PubMed Central
PMC11140465
DOI
10.1016/j.bpj.2024.04.009
PII: S0006-3495(24)00271-6
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus chemie MeSH
- hydrofobní a hydrofilní interakce * MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- membránové proteiny * chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- membránové proteiny * MeSH
Cell membranes act as semi-permeable barriers, often restricting the entry of large or hydrophilic molecules. Nonetheless, certain amphiphilic molecules, such as antimicrobial and cell-penetrating peptides, can cross these barriers. In this study, we demonstrate that specific properties of transmembrane proteins/peptides can enhance membrane permeation of amphiphilic peptides. Using coarse-grained molecular dynamics with free-energy calculations, we identify key translocation-enhancing attributes of transmembrane proteins/peptides: a continuous hydrophilic patch, charged residues preferably in the membrane center, and aromatic hydrophobic residues. By employing both coarse-grained and atomistic simulations, complemented by experimental validation, we show that these properties not only enhance peptide translocation but also speed up lipid flip-flop. The enhanced flip-flop reinforces the idea that proteins such as scramblases and insertases not only share structural features but also operate through identical biophysical mechanisms enhancing the insertion and translocation of amphiphilic molecules. Our insights offer guidelines for the designing of translocation-enhancing proteins/peptides that could be used in medical and biotechnological applications.
Zobrazit více v PubMed
Wang J., Dou X., et al. Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019;39:831–859. doi: 10.1002/med.21542. PubMed DOI
Guidotti G., Brambilla L., Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017;38:406–424. https://linkinghub.elsevier.com/retrieve/pii/S0165614717300172 PubMed
Kabelka I., Vácha R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc. Chem. Res. 2021;54:2196–2204. doi: 10.1021/acs.accounts.1c00047. PubMed DOI
Avci F.G., Akbulut B.S., Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules. 2018;8:77. https://pubmed.ncbi.nlm.nih.gov/30135402 PubMed PMC
Bartoš L., Kabelka I., Vácha R. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins. Biophys. J. 2021;120:2296–2305. https://www.sciencedirect.com/science/article/pii/S0006349521003003 PubMed PMC
Hankins H.M., Baldridge R.D., et al. Graham T.R. Role of Flippases, Scramblases and Transfer Proteins in Phosphatidylserine Subcellular Distribution. Traffic. 2015;16:35–47. doi: 10.1111/tra.12233. PubMed DOI PMC
Ernst O.P., Menon A.K. Phospholipid scrambling by rhodopsin. Photochem. Photobiol. Sci. 2015;14:1922–1931. doi: 10.1039/c5pp00195a. PubMed DOI PMC
Nakao H., Hayashi C., et al. Nakano M. Effects of Hydrophilic Residues and Hydrophobic Length on Flip-Flop Promotion by Transmembrane Peptides. J. Phys. Chem. B. 2018;122:4318–4324. doi: 10.1021/acs.jpcb.8b00298. PubMed DOI
Arndt M., Alvadia C., et al. Dutzler R. Structural basis for the activation of the lipid scramblase TMEM16F. Nat. Commun. 2022;13:6692. https://www.nature.com/articles/s41467-022-34497-x PubMed PMC
Jahn H., Bartoš L., et al. Menon A.K. Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase. Nat. Commun. 2023;14:8115. https://www.nature.com/articles/s41467-023-43570-y PubMed PMC
Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059
Marrink S.J., Risselada H.J., et al. de Vries A.H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI
Monticelli L., Kandasamy S.K., et al. Marrink S.-J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theor. Comput. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI
de Jong D.H., Singh G., et al. Marrink S.J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theor. Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI
Javanainen M., Martinez-Seara H., Vattulainen I. Excessive aggregation of membrane proteins in the Martini model. PLoS One. 2017;12 doi: 10.1371/journal.pone.0187936. PubMed DOI PMC
Spinti J.K., Neiva Nunes F., Melo M.N. Room for improvement in the initial martini 3 parameterization of peptide interactions. Chem. Phys. Lett. 2023;819 https://linkinghub.elsevier.com/retrieve/pii/S0009261423001410
Jo S., Kim T., et al. Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Šali A., Blundell T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Gautier R., Douguet D., et al. Drin G. HELIQUEST: a web server to screen sequences with specific -helical properties. Bioinformatics. 2008;24:2101–2102. doi: 10.1093/bioinformatics/btn392. PubMed DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126 doi: 10.1063/1.2408420. PubMed DOI
Berendsen H.J.C., Postma J.P.M., et al. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Parrinello M., Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980;45:1196–1199. doi: 10.1103/PhysRevLett.45.1196. DOI
Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Torrie G.M., Valleau J.P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 1974;28:578–581.
Torrie G., Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23:187–199. https://linkinghub.elsevier.com/retrieve/pii/0021999177901218
Brožek R., Kabelka I., Vácha R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J. Phys. Chem. B. 2020;124:5940–5947. doi: 10.1021/acs.jpcb.0c03291. PubMed DOI
Fukunishi H., Watanabe O., Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 2002;116:9058–9067. doi: 10.1063/1.1472510. DOI
Tribello G.A., Bonomi M., et al. Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Kumar S., Rosenberg J.M., et al. Kollman P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI
Souaille M., Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001;135:40–57. https://linkinghub.elsevier.com/retrieve/pii/S0010465500002150
Hub J.S., de Groot B.L., van der Spoel D. g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theor. Comput. 2010;6:3713–3720. doi: 10.1021/ct100494z. DOI
Jämbeck J.P.M., Lyubartsev A.P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC
Jämbeck J.P.M., Lyubartsev A.P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J. Chem. Theor. Comput. 2012;8:2938–2948. doi: 10.1021/ct300342n. PubMed DOI
Grote F., Lyubartsev A.P. Optimization of Slipids Force Field Parameters Describing Headgroups of Phospholipids. J. Phys. Chem. B. 2020;124:8784–8793. doi: 10.1021/acs.jpcb.0c06386. PubMed DOI PMC
Klauda J.B., Venable R.M., et al. Pastor R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
Hanwell M.D., Curtis D.E., et al. Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Hess B., Bekker H., et al. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Essmann U., Perera L., et al. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. https://pubs.aip.org/aip/jcp/article/103/19/8577-8593/180219
Kabelka I., Vácha R. Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane. Biophys. J. 2018;115:1045–1054. doi: 10.1016/j.bpj.2018.08.012. PubMed DOI PMC
Ulmschneider J.P. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores. Biophys. J. 2017;113:73–81. https://linkinghub.elsevier.com/retrieve/pii/S0006349517306239 PubMed PMC
Irudayam S.J., Berkowitz M.L. Binding and reorientation of melittin in a POPC bilayer: Computer simulations. Biochim. Biophys. Acta. 2012;1818:2975–2981. https://linkinghub.elsevier.com/retrieve/pii/S0005273612002581 PubMed
Chetwynd A., Wee C.L., et al. Sansom M.S.P. The Energetics of Transmembrane Helix Insertion into a Lipid Bilayer. Biophys. J. 2010;99:2534–2540. https://linkinghub.elsevier.com/retrieve/pii/S0006349510009689 PubMed PMC
Wang L., Iwasaki Y., et al. Bütikofer P. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein–coupled receptor and TMEM16 scramblases. J. Biol. Chem. 2018;293:18318–18327. https://linkinghub.elsevier.com/retrieve/pii/S0021925820312126 PubMed PMC
Hall B.A., Chetwynd A.P., Sansom M.S.P. Exploring Peptide-Membrane Interactions with Coarse-Grained MD Simulations. Biophys. J. 2011;100:1940–1948. https://linkinghub.elsevier.com/retrieve/pii/S000634951100261X PubMed PMC
Cardenas A.E., Drexler C.I., et al. Elber R. Peptide Permeation across a Phosphocholine Membrane: An Atomically Detailed Mechanism Determined through Simulations and Supported by Experimentation. J. Phys. Chem. B. 2022;126:2834–2849. doi: 10.1021/acs.jpcb.1c10966. PubMed DOI PMC
Elber R. Defect Formation and Peptide Permeation across Phospholipid Membranes. J. Phys. Chem. B. 2023;127:7810–7818. doi: 10.1021/acs.jpcb.3c04895. PubMed DOI
Wu X., Rapoport T.A. Translocation of Proteins through a Distorted Lipid Bilayer. Trends Cell Biol. 2021;31:473–484. https://linkinghub.elsevier.com/retrieve/pii/S0962892421000064 PubMed PMC
Devaux P.F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991;30:1163–1173. doi: 10.1021/bi00219a001. PubMed DOI
Doktorova M., Symons J.L., et al. Levental I. Cell Membranes Sustain Phospholipid Imbalance Via Cholesterol Asymmetry. bioRxiv. 2023 https://www.biorxiv.org/content/early/2023/07/31/2023.07.30.551157 Preprint at.
Bartoš L., Vácha R. Peptide translocation across asymmetric phospholipid membranes. Biophys. J. 2024;123:693–702. https://linkinghub.elsevier.com/retrieve/pii/S000634952400105X PubMed PMC
Li D., Rocha-Roa C., et al. Vanni S. Lipid scrambling is a general feature of protein insertases. bioRxiv. 2023 https://www.biorxiv.org/content/early/2023/09/01/2023.09.01.555937 Preprint at. PubMed PMC
Bartoš L., Menon A.K., Vácha R. Insertases scramble lipids: Molecular simulations of MTCH2. Structure. 2024 https://linkinghub.elsevier.com/retrieve/pii/S0969212624000364 PubMed PMC
Herrero C.G., Thallmair S. GPCR surface creates a favorable pathway for membrane permeation of drug molecules. bioRxiv. 2024 doi: 10.1101/2024.03.18.585530. Preprint at. DOI
Lee T.-H., Hall K.N., Aguilar M.-I. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Curr. Top. Med. Chem. 2016;16:25–39. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1568-0266&volume=16&issue=1&spage=25 PubMed