Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 NS116747
NINDS NIH HHS - United States
R21 NS119779
NINDS NIH HHS - United States
PubMed
38065946
PubMed Central
PMC10709637
DOI
10.1038/s41467-023-43570-y
PII: 10.1038/s41467-023-43570-y
Knihovny.cz E-zdroje
- MeSH
- fosfolipidy * metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- napětím ovládané aniontové kanály metabolismus MeSH
- napětím ovládaný aniontový kanál 1 * metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy * MeSH
- napětím ovládané aniontové kanály MeSH
- napětím ovládaný aniontový kanál 1 * MeSH
Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.
Department of Biochemistry Weill Cornell Medical College New York NY 10065 USA
Department of Molecular Cell Biology University of Osnabrück Osnabrück 49076 Germany
Zobrazit více v PubMed
Horvath SE, Daum G. Lipids of mitochondria. Prog. Lipid Res. 2013;52:590–614. doi: 10.1016/j.plipres.2013.07.002. PubMed DOI
Tatsuta T, Langer T. Intramitochondrial phospholipid trafficking. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:81–89. doi: 10.1016/j.bbalip.2016.08.006. PubMed DOI
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol. Chem. 2020;401:821–833. doi: 10.1515/hsz-2020-0121. PubMed DOI
Schlame M, Greenberg ML. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:3–7. doi: 10.1016/j.bbalip.2016.08.010. PubMed DOI PMC
Reinisch KM, Prinz WA. Mechanisms of nonvesicular lipid transport. J. Cell Biol. 2021;220:e202012058. doi: 10.1083/jcb.202012058. PubMed DOI PMC
Jasinska R, Zborowski J, Somerharju P. Intramitochondrial distribution and transport of phosphatidylserine and its decarboxylation product, phosphatidylethanolamine. Application of pyrene-labeled species. Biochim. Biophys. Acta. 1993;1152:161–70. doi: 10.1016/0005-2736(93)90243-S. PubMed DOI
Lampl M, Leber A, Paltauf F, Daum G. Import of phosphatidylinositol and phosphatidylcholine into mitochondria of the yeast, Saccharomyces cerevisiae. FEBS Lett. 1994;356:1–4. doi: 10.1016/0014-5793(94)01197-4. PubMed DOI
Dolis D, de Kroon AI, de Kruijff B. Transmembrane movement of phosphatidylcholine in mitochondrial outer membrane vesicles. J. Biol. Chem. 1996;271:11879–83. doi: 10.1074/jbc.271.20.11879. PubMed DOI
Janssen MJ, Koorengevel MC, de Kruijff B, de Kroon AI. Transbilayer movement of phosphatidylcholine in the mitochondrial outer membrane of Saccharomyces cerevisiae is rapid and bidirectional. Biochim. Biophys. Acta. 1999;1421:64–76. doi: 10.1016/S0005-2736(99)00113-3. PubMed DOI
Pomorski TG, Menon AK. Lipid somersaults: uncovering the mechanisms of protein-mediated lipid flipping. Prog. Lipid Res. 2016;64:69–84. doi: 10.1016/j.plipres.2016.08.003. PubMed DOI PMC
Bergdoll, L., Grabe, M. & Abramson, J. An Assessment of How VDAC structures have impacted our understanding of their function. in Molecular Basis for Mitochondrial Signaling (ed. Rostovtseva, T.K.) 141-160 (Springer International Publishing AG, 2017).
Zeth K, Zachariae U. Ten years of high resolution structural research on the Voltage Dependent Anion Channel (VDAC)-Recent developments and future directions. Front. Physiol. 2018;9:108. doi: 10.3389/fphys.2018.00108. PubMed DOI PMC
De Pinto V. Renaissance of VDAC: new insights on a protein family at the interface between mitochondria and cytosol. Biomolecules. 2021;11:107. doi: 10.3390/biom11010107. PubMed DOI PMC
Di Rosa MC, Guarino F, Conti Nibali S, Magri A, De Pinto V. Voltage-dependent anion selective channel isoforms in yeast: expression, structure, and functions. Front. Physiol. 2021;12:675708. doi: 10.3389/fphys.2021.675708. PubMed DOI PMC
Raghavan A, Sheiko T, Graham BH, Craigen WJ. Voltage-dependant anion channels: novel insights into isoform function through genetic models. Biochim. Biophys. Acta. 2012;1818:1477–85. doi: 10.1016/j.bbamem.2011.10.019. PubMed DOI PMC
Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim. Biophys. Acta. 2015;1848:2547–75. doi: 10.1016/j.bbamem.2014.10.040. PubMed DOI
Messina A, Reina S, Guarino F, De Pinto V. VDAC isoforms in mammals. Biochim. Biophys. Acta. 2012;1818:1466–76. doi: 10.1016/j.bbamem.2011.10.005. PubMed DOI
Villinger S, et al. Functional dynamics in the voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA. 2010;107:22546–51. doi: 10.1073/pnas.1012310108. PubMed DOI PMC
Wang L, et al. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. J. Biol. Chem. 2018;293:18318–18327. doi: 10.1074/jbc.RA118.004213. PubMed DOI PMC
Kubelt J, Menon AK, Muller P, Herrmann A. Transbilayer movement of fluorescent phospholipid analogues in the cytoplasmic membrane of Escherichia coli. Biochemistry. 2002;41:5605–12. doi: 10.1021/bi0118714. PubMed DOI
Chang QL, Gummadi SN, Menon AK. Chemical modification identifies two populations of glycerophospholipid flippase in rat liver ER. Biochemistry. 2004;43:10710–8. doi: 10.1021/bi049063a. PubMed DOI
Menon I, et al. Opsin is a phospholipid flippase. Curr. Biol. 2011;21:149–53. doi: 10.1016/j.cub.2010.12.031. PubMed DOI PMC
Barnard TJ, Dautin N, Lukacik P, Bernstein HD, Buchanan SK. Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat. Struct. Mol. Biol. 2007;14:1214–20. doi: 10.1038/nsmb1322. PubMed DOI PMC
Yuan X, et al. Molecular basis for the folding of beta-helical autotransporter passenger domains. Nat. Commun. 2018;9:1395. doi: 10.1038/s41467-018-03593-2. PubMed DOI PMC
Kol MA, van Dalen A, de Kroon AI, de Kruijff B. Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J. Biol. Chem. 2003;278:24586–93. doi: 10.1074/jbc.M301875200. PubMed DOI
Betaneli V, Petrov EP, Schwille P. The role of lipids in VDAC oligomerization. Biophys. J. 2012;102:523–31. doi: 10.1016/j.bpj.2011.12.049. PubMed DOI PMC
Kim J, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science. 2019;366:1531–1536. doi: 10.1126/science.aav4011. PubMed DOI PMC
Shoshan-Barmatz V, Mizrachi D, Keinan N. Oligomerization of the mitochondrial protein VDAC1: from structure to function and cancer therapy. Prog. Mol. Biol. Transl. Sci. 2013;117:303–34. doi: 10.1016/B978-0-12-386931-9.00011-8. PubMed DOI
Schredelseker J, et al. High resolution structure and double electron-electron resonance of the zebrafish voltage-dependent anion channel 2 reveal an oligomeric population. J. Biol. Chem. 2014;289:12566–77. doi: 10.1074/jbc.M113.497438. PubMed DOI PMC
Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V. Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem. J. 2005;386:73–83. doi: 10.1042/BJ20041356. PubMed DOI PMC
Bergdoll LA, et al. Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1. Proc. Natl. Acad. Sci. USA. 2018;115:E172–E179. doi: 10.1073/pnas.1715464115. PubMed DOI PMC
Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim. Biophys. Acta. 2013;1833:1745–54. doi: 10.1016/j.bbamcr.2013.03.017. PubMed DOI
Goncalves RP, Buzhysnskyy N, Scheuring S. Mini review on the structure and supramolecular assembly of VDAC. J .Bioenerg. Biomembr. 2008;40:133–8. doi: 10.1007/s10863-008-9141-2. PubMed DOI
Hoogenboom BW, Suda K, Engel A, Fotiadis D. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J. Mol. Biol. 2007;370:246–55. doi: 10.1016/j.jmb.2007.04.073. PubMed DOI
Mannella CA. Structure of the outer mitochondrial membrane: ordered arrays of porelike subunits in outer-membrane fractions from Neurospora crassa mitochondria. J. Cell Biol. 1982;94:680–7. doi: 10.1083/jcb.94.3.680. PubMed DOI PMC
Leung MR, et al. In-cell structures of conserved supramolecular protein arrays at the mitochondria-cytoskeleton interface in mammalian sperm. Proc. Natl. Acad. Sci. USA. 2021;118:e2110996118. doi: 10.1073/pnas.2110996118. PubMed DOI PMC
Bayrhuber M, et al. Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA. 2008;105:15370–5. doi: 10.1073/pnas.0808115105. PubMed DOI PMC
Geula S, Naveed H, Liang J, Shoshan-Barmatz V. Structure-based analysis of VDAC1 protein: defining oligomer contact sites. J. Biol. Chem. 2012;287:2179–90. doi: 10.1074/jbc.M111.268920. PubMed DOI PMC
Cliff L, Chadda R, Robertson JL. Occupancy distributions of membrane proteins in heterogeneous liposome populations. Biochim. Biophys. Acta Biomembr. 2020;1862:183033. doi: 10.1016/j.bbamem.2019.183033. PubMed DOI PMC
Goren MA, et al. Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Nat. Commun. 2014;5:5115. doi: 10.1038/ncomms6115. PubMed DOI PMC
Ploier B, et al. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. Nat. Commun. 2016;7:12832. doi: 10.1038/ncomms12832. PubMed DOI PMC
Stockbridge RB. The application of Poisson distribution statistics in ion channel reconstitution to determine oligomeric architecture. Methods Enzymol. 2021;652:321–340. doi: 10.1016/bs.mie.2021.02.018. PubMed DOI PMC
Zeth K. Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. Biochim. Biophys. Acta. 2010;1797:1292–9. doi: 10.1016/j.bbabio.2010.04.019. PubMed DOI
Petrungaro C, Kornmann B. Lipid exchange at ER-mitochondria contact sites: a puzzle falling into place with quite a few pieces missing. Curr. Opin. Cell Biol. 2019;57:71–76. doi: 10.1016/j.ceb.2018.11.005. PubMed DOI
Pomorski T, Menon AK. Lipid flippases and their biological functions. Cell. Mol. Life Sci. 2006;63:2908–21. doi: 10.1007/s00018-006-6167-7. PubMed DOI PMC
Khelashvili G, Menon AK. Phospholipid scrambling by G protein-coupled receptors. Annu. Rev. Biophys. 2022;51:39–61. doi: 10.1146/annurev-biophys-090821-083030. PubMed DOI PMC
Kalienkova V, Clerico Mosina V, Paulino C. The Groovy TMEM16 family: molecular mechanisms of lipid scrambling and ion conduction. J. Mol. Biol. 2021;433:166941. doi: 10.1016/j.jmb.2021.166941. PubMed DOI
Verchere A, et al. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Sci. Rep. 2017;7:9522. doi: 10.1038/s41598-017-09835-5. PubMed DOI PMC
Matoba K, et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 2020;27:1185–1193. doi: 10.1038/s41594-020-00518-w. PubMed DOI
Maeda S, et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 2020;27:1194–1201. doi: 10.1038/s41594-020-00520-2. PubMed DOI PMC
Malvezzi M, et al. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc. Natl. Acad. Sci. USA. 2018;115:E7033–E7042. doi: 10.1073/pnas.1806721115. PubMed DOI PMC
Bennett WF, Tieleman DP. The importance of membrane defects-lessons from simulations. Acc. Chem. Res. 2014;47:2244–51. doi: 10.1021/ar4002729. PubMed DOI
Chadda R, et al. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. Elife. 2021;10:e63288. doi: 10.7554/eLife.63288. PubMed DOI PMC
Miyata N, Fujii S, Kuge O. Porin proteins have critical functions in mitochondrial phospholipid metabolism in yeast. J. Biol. Chem. 2018;293:17593–17605. doi: 10.1074/jbc.RA118.005410. PubMed DOI PMC
Broeskamp F, et al. Porin 1 modulates autophagy in yeast. Cells. 2021;10:2416. doi: 10.3390/cells10092416. PubMed DOI PMC
Davis J, et al. A dynamic actin cytoskeleton is required to prevent constitutive VDAC-dependent MAPK signalling and aberrant lipid homeostasis. iScience. 2023;26:107539. doi: 10.1016/j.isci.2023.107539. PubMed DOI PMC
Araiso Y, et al. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature. 2019;575:395–401. doi: 10.1038/s41586-019-1680-7. PubMed DOI
Wang W, et al. Atomic structure of human TOM core complex. Cell Discov. 2020;6:67. doi: 10.1038/s41421-020-00198-2. PubMed DOI PMC
Tucker K, Park E. Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat Struct. Mol. Biol. 2019;26:1158–1166. doi: 10.1038/s41594-019-0339-2. PubMed DOI PMC
Egea PF. Mechanisms of non-vesicular exchange of lipids at membrane contact sites: of shuttles, tunnels and, funnels. Front. Cell Dev. Biol. 2021;9:784367. doi: 10.3389/fcell.2021.784367. PubMed DOI PMC
Takeda H, et al. Mitochondrial sorting and assembly machinery operates by beta-barrel switching. Nature. 2021;590:163–169. doi: 10.1038/s41586-020-03113-7. PubMed DOI
Guna A, et al. MTCH2 is a mitochondrial outer membrane protein insertase. Science. 2022;378:317–322. doi: 10.1126/science.add1856. PubMed DOI PMC
Bartos, L., Menon, A.K. & Vacha, R. Insertases scramble lipids: molecular simulations of MTCH2. bioRxiv (2023). PubMed PMC
Li, D., Rocha-Roa, C., Schilling, M.A., Reinisch, K.M. & Vanni, S. Lipid scrambling is a general feature of protein insertases. bioRxiv (2023). PubMed PMC
Ghanbarpour A, Valverde DP, Melia TJ, Reinisch KM. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl. Acad. Sci. USA. 2021;118:e2101562118. doi: 10.1073/pnas.2101562118. PubMed DOI PMC
Adlakha J, Hong Z, Li P, Reinisch KM. Structural and biochemical insights into lipid transport by VPS13 proteins. J. Cell Biol. 2022;221:e202202030. doi: 10.1083/jcb.202202030. PubMed DOI PMC
Dadsena S, et al. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat. Commun. 2019;10:1832. doi: 10.1038/s41467-019-09654-4. PubMed DOI PMC
Prilipov A, Phale PS, Van Gelder P, Rosenbusch JP, Koebnik R. Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli. FEMS Microbiol. Lett. 1998;163:65–72. doi: 10.1111/j.1574-6968.1998.tb13027.x. PubMed DOI
Miller CA, 3rd, Martinat MA, Hyman LE. Assessment of aryl hydrocarbon receptor complex interactions using pBEVY plasmids: expressionvectors with bi-directional promoters for use in Saccharomyces cerevisiae. Nucleic Acids Res. 1998;26:3577–83. doi: 10.1093/nar/26.15.3577. PubMed DOI PMC
Brunner JD, Schenck S. Preparation of Proteoliposomes with Purified TMEM16 protein for accurate measures of lipid scramblase activity. Methods Mol. Biol. 2019;1949:181–199. doi: 10.1007/978-1-4939-9136-5_14. PubMed DOI
Rouser G, Fkeischer S, Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970;5:494–6. doi: 10.1007/BF02531316. PubMed DOI
Mimms LT, Zampighi G, Nozaki Y, Tanford C, Reynolds JA. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry. 1981;20:833–40. doi: 10.1021/bi00507a028. PubMed DOI
Daum G, Böhmi PC, Schatz G. Import of proteins into mitochondria. J. Biol. Chem. 1981;257:13028–13033. doi: 10.1016/S0021-9258(18)33617-2. PubMed DOI
Miyata N, Watanabe Y, Tamura Y, Endo T, Kuge O. Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria. J. Cell Biol. 2016;214:77–88. doi: 10.1083/jcb.201601082. PubMed DOI PMC
Sam PN, et al. Impaired phosphatidylethanolamine metabolism activates a reversible stress response that detects and resolves mutant mitochondrial precursors. iScience. 2021;24:102196. doi: 10.1016/j.isci.2021.102196. PubMed DOI PMC
Riezman H, et al. The outer membrane of yeast mitochondria: isolation of outside-out sealed vesicles. EMBO J. 1983;2:1105–11. doi: 10.1002/j.1460-2075.1983.tb01553.x. PubMed DOI PMC
Panagabko C, Baptist M, Atkinson J. In vitro lipid transfer assays of phosphatidylinositol transfer proteins provide insight into the in vivo mechanism of ligand transfer. Biochim. Biophys. Acta Biomembr. 2019;1861:619–630. doi: 10.1016/j.bbamem.2018.12.003. PubMed DOI
Wustner D, Herrmann A, Muller P. Head group-independent interaction of phospholipids with bile salts. A fluorescence and EPR study. J. Lipid Res. 2000;41:395–404. doi: 10.1016/S0022-2275(20)34478-3. PubMed DOI
Yegneswaran S, Deguchi H, Griffin JH. Glucosylceramide, a neutral glycosphingolipid anticoagulant cofactor, enhances the interaction of human- and bovine-activated protein C with negatively charged phospholipid vesicles. J. Biol. Chem. 2003;278:14614–21. doi: 10.1074/jbc.M206746200. PubMed DOI
Abraham MJ, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Souza PCT, et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021;18:382–388. doi: 10.1038/s41592-021-01098-3. PubMed DOI
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–24. doi: 10.1021/jp071097f. PubMed DOI
Monticelli L, et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008;4:819–34. doi: 10.1021/ct700324x. PubMed DOI
de Jong DH, et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–97. doi: 10.1021/ct300646g. PubMed DOI
Periole X, Cavalli M, Marrink SJ, Ceruso MA. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 2009;5:2531–43. doi: 10.1021/ct9002114. PubMed DOI
Javanainen M, Martinez-Seara H, Vattulainen I. Excessive aggregation of membrane proteins in the Martini model. PLoS One. 2017;12:e0187936. doi: 10.1371/journal.pone.0187936. PubMed DOI PMC
Lindorff-Larsen K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8. doi: 10.1002/prot.22711. PubMed DOI PMC
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–65. doi: 10.1002/jcc.20945. PubMed DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Berendsen HJC, Postma JPM, Gunsteren WFV, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Thallmair S, Javanainen M, Fabian B, Martinez-Seara H, Marrink SJ. Nonconverged constraints cause artificial temperature gradients in lipid bilayer simulations. J. Phys. Chem. B. 2021;125:9537–9546. doi: 10.1021/acs.jpcb.1c03665. PubMed DOI PMC
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977;23:187–199. doi: 10.1016/0021-9991(77)90121-8. DOI
Fukunishi H, Watanabe O, Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J. Chem. Phys. 2002;116:9058–9067. doi: 10.1063/1.1472510. DOI
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI
Souaille M, Roux BT. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001;135:40–57. doi: 10.1016/S0010-4655(00)00215-0. DOI
Hub JS, de Groot BL, van der Spoel D. g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem.Theory Comput. 2010;6:3713–3720. doi: 10.1021/ct100494z. DOI
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Optimizing properties of translocation-enhancing transmembrane proteins
Insertases scramble lipids: Molecular simulations of MTCH2