Martini 3: a general purpose force field for coarse-grained molecular dynamics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
PubMed
33782607
DOI
10.1038/s41592-021-01098-3
PII: 10.1038/s41592-021-01098-3
Knihovny.cz E-zdroje
- MeSH
- lipidové dvojvrstvy MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.
Computational Physics Laboratory Tampere University Tampere Finland
Department of Biochemistry University of Oxford Oxford UK
Department of Chemistry Aarhus University Aarhus C Denmark
Department of Chemistry and Computational Biology Unit University of Bergen Bergen Norway
Department of Physics University of Helsinki Helsinki Finland
Frankfurt Institute for Advanced Studies Frankfurt am Main Germany
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Intangible Realities Laboratory University of Bristol School of Chemistry Bristol UK
Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS and University of Lyon Lyon France
Zobrazit více v PubMed
Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018). PubMed DOI
Ingólfsson, H. I. et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 225–248 (2014). PubMed DOI
Marrink, S. J., De Vries, A. H. & Mark, A. E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760 (2004). DOI
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed DOI
Uusitalo, J. J., Ingólfsson, H. I., Akhshi, P., Tieleman, D. P. & Marrink, S. J. Martini coarse-grained force field: extension to DNA. J. Chem. Theory Comput. 11, 3932–3945 (2015). PubMed DOI
Abellón-Ruiz, J. et al. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat. Microbiol. 2, 1616–1623 (2017). PubMed DOI
Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018). PubMed DOI PMC
Van Eerden, F. J., Melo, M. N., Frederix, P. W. J. M., Periole, X. & Marrink, S. J. Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat. Commun. 8, 15214 (2017). PubMed DOI PMC
Vögele, M., Köfinger, J. & Hummer, G. Hydrodynamics of diffusion in lipid membrane simulations. Phys. Rev. Lett. 120, 268104 (2018). PubMed DOI
Agostino, M. D., Risselada, H. J., Lürick, A., Ungermann, C. & Mayer, A. A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 551, 634–638 (2017). PubMed DOI
Jeena, M. T. et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 8, 26 (2017). PubMed DOI PMC
Jiang, Z. et al. Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 14, 912–917 (2015). PubMed DOI
Maingi, V. et al. Stability and dynamics of membrane-spanning DNA nanopores. Nat. Commun. 8, 14784 (2017). PubMed DOI PMC
Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015). PubMed DOI
Bochicchio, D., Salvalaglio, M. & Pavan, G. M. Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017). PubMed DOI PMC
Stark, A. C., Andrews, C. T. & Elcock, A. H. Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J. Chem. Theory Comput. 9, 4176–4185 (2013). DOI
Javanainen, M., Martinez-Seara, H. & Vattulainen, I. Excessive aggregation of membrane proteins in the Martini model. PLoS ONE 12, e0187936 (2017). PubMed DOI PMC
Schmalhorst, P. S., Deluweit, F., Scherrers, R., Heisenberg, C.-P. & Sikora, M. Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. J. Chem. Theory Comput. 13, 5039–5053 (2017). PubMed DOI
Alessandri, R. et al. Pitfalls of the Martini model. J. Chem. Theory Comput. 15, 5448–5460 (2019). PubMed DOI PMC
Uusitalo, J. J., Ingólfsson, H. I., Marrink, S. J. & Faustino, I. Martini coarse-grained force field: extension to RNA. Biophys. J. 113, 246–256 (2017). PubMed DOI PMC
Ben-Naim, A. Molecular Theory of Solutions (Oxford Univ. Press, 2006).
Ploetz, E. A., Bentenitis, N. & Smith, P. E. Kirkwood–Buff integrals for ideal solutions. J. Chem. Phys. 132, 164501 (2010). PubMed DOI PMC
Zych, A. J. & Iverson, B. L. Synthesis and conformational characterization of tethered, self-complexing 1,5-dialkoxynaphthalene/1,4,5,8-naphthalenetetracarboxylic diimide systems. J. Am. Chem. Soc. 122, 8898–8909 (2000). DOI
Gabriel, G. J. & Iverson, B. L. Aromatic oligomers that form hetero duplexes in aqueous solution. J. Am. Chem. Soc. 124, 15174–15175 (2002). PubMed DOI
Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012). PubMed DOI PMC
Gao, Z. G. & Ijzerman, A. P. Allosteric modulation of A(2A) adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000). PubMed DOI
Okur, H. I. et al. Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J. Phys. Chem. B 121, 1997–2014 (2017). PubMed DOI
Dupont, D., Depuydt, D. & Binnemans, K. Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. J. Phys. Chem. B 119, 6747–6757 (2015). PubMed DOI
Naert, P., Rabaey, K. & Stevens, C. V. Ionic liquid ion exchange: exclusion from strong interactions condemns cations to the most weakly interacting anions and dictates reaction equilibrium. Green Chem. 20, 4277–4286 (2018). DOI
Khan, H. M. et al. Capturing choline-aromatics cation–π interactions in the MARTINI force field. J. Chem. Theory Comput. 16, 2550–2560 (2020). PubMed DOI PMC
Tanaka, K., Caaveiro, J. M. M., Morante, K., González-Manãs, J. M. & Tsumoto, K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun. 6, 6337 (2015). PubMed DOI PMC
Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017). PubMed DOI PMC
Alessandri, R., Uusitalo, J. J., De Vries, A. H., Havenith, R. W. A. & Marrink, S. J. Bulk heterojunction morphologies with atomistic resolution from coarse-grain solvent evaporation simulations. J. Am. Chem. Soc. 139, 3697–3705 (2017). PubMed DOI PMC
Chiu, M. Y., Jeng, U. S., Su, C. H., Liang, K. S. & Wei, K. H. Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells. Adv. Mater. 20, 2573–2578 (2008). DOI
Petrov, D. & Zagrovic, B. Are current atomistic force fields accurate enough to study proteins in crowded environments? PLoS Comput. Biol. 10, e1003638 (2014). PubMed DOI PMC
Højgaard, C. et al. A soluble, folded protein without charged amino acid residues. Biochemistry 55, 3949–3956 (2016). PubMed DOI
Ruckenstein, E. & Shulgin, I. L. Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Adv. Colloid Interface Sci. 123–126, 97–103 (2006). PubMed DOI
Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T. & Engelman, D. M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000). PubMed DOI
Zhou, F. X., Merianos, H. J., Brunger, A. T. & Engelman, D. M. Polar residues drive association of polyleucine transmembrane helices. Proc. Natl Acad. Sci. USA 98, 2250–2255 (2001). PubMed DOI
Grau, B. et al. The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 1, 90–106 (2017). PubMed DOI PMC
Chen, L., Merzlyakov, M., Cohen, T., Shai, Y. & Hristova, K. Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Biophys. J. 96, 4622–4630 (2009). PubMed DOI PMC
Artemenko, E. O., Egorova, N. S., Arseniev, A. S. & Feofanov, A. V. Transmembrane domain of EphA1 receptor forms dimers in membrane-like environment. Biochim. Biophys. Acta 1778, 2361–2367 (2008). PubMed DOI
Sarabipour, S. & Hristova, K. Glycophorin A transmembrane domain dimerization in plasma membrane vesicles derived from CHO, HEK 293T, and A431 cells. Biochim. Biophys. Acta - Biomembr. 1828, 1829–1833 (2013). DOI
Chen, L., Novicky, L., Merzlyakov, M., Hristov, T. & Hristova, K. Measuring the energetics of membrane protein dimerization in mammalian membranes. J. Am. Chem. Soc. 132, 3628–3635 (2010). PubMed DOI
Nash, A., Notman, R. & Dixon, A. M. De novo design of transmembrane helix–helix interactions and measurement of stability in a biological membrane. Biochim. Biophys. Acta - Biomembr. 1848, 1248–1257 (2015). DOI
Finger, C. et al. The stability of transmembrane helix interactions measured in a biological membrane. J. Mol. Biol. 358, 1221–1228 (2006). PubMed DOI
Hong, H., Blois, T. M., Cao, Z. & Bowie, J. U. Method to measure strong protein–protein interactions in lipid bilayers using a steric trap. Proc. Natl Acad. Sci. USA 107, 19802–19807 (2010). PubMed DOI
Sparr, E. et al. Self-association of transmembrane α-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J. Biol. Chem. 280, 39324–39331 (2005). PubMed DOI
MacKenzie, K. R., Prestegard, J. H. & Engelman, D. M. Transmembrane helix dimer: structure and implications. Science 276, 131–133 (1997). PubMed DOI
Trenker, R., Call, M. E. & Call, M. J. Crystal structure of the glycophorin A transmembrane dimer in lipidic cubic phase. J. Am. Chem. Soc. 137, 15676–15679 (2015). PubMed DOI
Domański, J., Sansom, M. S. P., Stansfeld, P. J. & Best, R. B. Balancing force field protein–lipid interactions to capture transmembrane helix–helix association. J. Chem. Theory Comput. 14, 1706–1715 (2018). PubMed DOI PMC
Souza, P. C. T., Thallmair, S., Marrink, S. J. & Mera-Adasme, R. An allosteric pathway in copper, zinc superoxide dismutase unravels the molecular mechanism of the G93A amyotrophic lateral sclerosis-linked mutation. J. Phys. Chem. Lett. 10, 7740–7744 (2019). PubMed DOI PMC
Brini, E. et al. Systematic coarse-graining methods for soft matter simulations-a review. Soft Matter 9, 2108–2119 (2013). DOI
Foley, T. T., Shell, M. S. & Noid, W. G. The impact of resolution upon entropy and information in coarse-grained models. J. Chem. Phys. 143, 243104 (2015). PubMed DOI
Wagner, J. W., Dama, J. F., Durumeric, A. E. P. & Voth, G. A. On the representability problem and the physical meaning of coarse-grained models. J. Chem. Phys. 145, 044108 (2016). PubMed DOI
Wörner, S. J., Bereau, T., Kremer, K. & Rudzinski, J. F. Direct route to reproducing pair distribution functions with coarse-grained models via transformed atomistic cross correlations. J. Chem. Phys. 151, 244110 (2019). PubMed DOI
Noid, W. G., Chu, J. W., Ayton, G. S. & Voth, G. A. Multiscale coarse-graining and structural correlations: connections to liquid-state theory. J. Phys. Chem. B. 111, 4116–4127 (2007). PubMed DOI PMC
Wu, Z., Cui, Q. & Yethiraj, A. Driving force for the association of hydrophobic peptides: the importance of electrostatic interactions in coarse-grained water models. J. Phys. Chem. Lett. 2, 1794–1798 (2011). DOI
Jin, J., Yu, A. & Voth, G. A. Temperature and phase transferable bottom-up coarse-grained models. J. Chem. Theory Comput. 16, 6823–6842 (2020). PubMed DOI
Yesylevskyy, S. O., Schäfer, L. V., Sengupta, D. & Marrink, S. J. Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6, e1000810 (2010). PubMed DOI PMC
Michalowsky, J., Schäfer, L. V., Holm, C. & Smiatek, J. A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. J. Chem. Phys. 146, 054501 (2017). PubMed DOI
Marrink, S. J. & Tieleman, D. P. Perspective on the Martini model. Chem. Soc. Rev. 42, 6801–22 (2013). PubMed DOI
Bruininks, B. M. H., Souza, P. C. T. & Marrink, S. J. in Biomolecular Simulations: Methods and Protocols (eds Bonomi, M. & Camilloni, C.) 105–127 (Humana Press Inc., 2019).
Liu, J. et al. Enhancing molecular n-type doping of donor-acceptor copolymers by tailoring side chains. Adv. Mater. 30, 1704630 (2018). DOI
Vazquez-Salazar, L. I., Selle, M., de Vries, A., Marrink, S. J. & Souza, P. C. T. Martini coarse-grained models of imidazolium-based ionic liquids: from nanostructural organization to liquid–liquid extraction. Green Chem. 22, 7376–7386 (2020). DOI
Souza, P. C. T. et al. Protein–ligand binding with the coarse-grained Martini model. Nat. Commun. 11, 3714 (2020). PubMed DOI PMC
López, C. A. et al. Martini coarse-grained force field: extension to carbohydrates. J. Chem. Theory Comput. 5, 3195–3210 (2009). PubMed DOI
Monticelli, L. et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008). PubMed DOI
Grunewald, F., Rossi, G., de Vries, A. H., Marrink, S. J. & Monticelli, L. Transferable MARTINI model of poly(ethylene oxide). J. Phys. Chem. B 122, 7436–7449 (2018). PubMed DOI
de Jong, D. H. et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–97 (2013). PubMed DOI
Herzog, F. A., Braun, L., Schoen, I. & Vogel, V. Improved side chain dynamics in MARTINI simulations of protein–lipid interfaces. J. Chem. Theory Comput. 12, 2446–2458 (2016). PubMed DOI
Poma, A. B., Cieplak, M. & Theodorakis, P. E. Combining the MARTINI and structure-based coarse-grained approaches for the molecular dynamics studies of conformational transitions in proteins. J. Chem. Theory Comput. 13, 1366–1374 (2017). PubMed DOI
Periole, X., Cavalli, M., Marrink, S.-J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–2543 (2009). PubMed DOI
Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P. & Marrink, S. J. Computational lipidomics with insane: a versatile tool for generating Custom membranes for molecular simulations. J. Chem. Theory Comput. 11, 2144–2155 (2015). PubMed DOI
Melo, M. N., Ingólfsson, H. I. & Marrink, S. J. Parameters for Martini sterols and hopanoids based on a virtual-site description. J. Chem. Phys. 143, 243152 (2015). PubMed DOI
López, C. A., Sovova, Z., van Eerden, F. J., de Vries, A. H. & Marrink, S. J. Martini force field parameters for glycolipids. J. Chem. Theory Comput. 9, 1694–1708 (2013). PubMed DOI
Carpenter, T. S. et al. Capturing phase behavior of ternary lipid mixtures with a refined Martini coarse-grained force field. J. Chem. Theory Comput. 14, 6050–6062 (2018). PubMed DOI
de Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199, 1–7 (2016). DOI
Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974). DOI
Páll, S. & Hess, B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 184, 2641–2650 (2013). DOI
Verlet, L. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967). DOI
Tironi, I. G., Sperb, R., Smith, P. E. & Van Gunsteren, W. F. A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459 (1995). DOI
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995). DOI
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed DOI
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). DOI
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). DOI
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). DOI
Wassenaar, T. A., Ingólfsson, H. I., Prieß, M., Marrink, S. J. & Schäfer, L. V. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. J. Phys. Chem. B. 117, 3516–3530 (2013). PubMed DOI
Wassenaar, T. A. et al. High-throughput simulations of dimer and trimer assembly of membrane proteins. The DAFT approach. J. Chem. Theory Comput. 11, 2278–91 (2015). PubMed DOI
Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Molec. Graph. 14, 33–38 (1996). DOI
Gowers, R. J. et al. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. in Proc. 15th Python Sci. Conference 98–105 (2016).
Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations
Coordination of transporter, cargo, and membrane properties during non-vesicular lipid transport
Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7
Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2
Insertases scramble lipids: Molecular simulations of MTCH2
Peptide translocation across asymmetric phospholipid membranes
Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes
Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase
Insertases Scramble Lipids: Molecular Simulations of MTCH2
Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport
Optimized OPEP Force Field for Simulation of Crowded Protein Solutions