Martini 3: a general purpose force field for coarse-grained molecular dynamics

. 2021 Apr ; 18 (4) : 382-388. [epub] 20210329

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33782607

Grantová podpora
Z99 DK999999 Intramural NIH HHS - United States
ZIA DK075104 Intramural NIH HHS - United States

Odkazy

PubMed 33782607
PubMed Central PMC12554258
DOI 10.1038/s41592-021-01098-3
PII: 10.1038/s41592-021-01098-3
Knihovny.cz E-zdroje

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.

Komentář v

PubMed

Zobrazit více v PubMed

Bottaro S & Lindorff-Larsen K Biophysical experiments and biomolecular simulations: A perfect match? Science 361, 355–360 (2018). PubMed

Ingólfsson HI et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 225–248 (2014). PubMed PMC

Marrink SJ, De Vries AH & Mark AE Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 108, 750–760 (2004).

Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP & de Vries AH The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed

Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP & Marrink SJ Martini Coarse-Grained Force Field: Extension to DNA. J. Chem. Theory Comput. 11, 3932–3945 (2015). PubMed

Abellón-Ruiz J et al. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat. Microbiol. 2, 1616–1623 (2017). PubMed

Yen HY et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018). PubMed PMC

Van Eerden FJ, Melo MN, Frederix PWJM, Periole X & Marrink SJ Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat. Commun. 8, 15214 (2017). PubMed PMC

Vögele M, Köfinger J & Hummer G Hydrodynamics of Diffusion in Lipid Membrane Simulations. Phys. Rev. Lett. 120, (2018). PubMed

Agostino MD, Risselada HJ, Lürick A, Ungermann C & Mayer A A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 551, 634–638 (2017). PubMed

Jeena MT et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 8, 26 (2017). PubMed PMC

Jiang Z et al. Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 14, 912–917 (2015). PubMed

Maingi V et al. Stability and dynamics of membrane-spanning DNA nanopores. Nat. Commun. 8, 14784 (2017). PubMed PMC

Frederix PWJM et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015). PubMed

Bochicchio D, Salvalaglio M & Pavan GM Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017). PubMed PMC

Stark AC, Andrews CT & Elcock AH Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J. Chem. Theory Comput. 9, 4176–4185 (2013). PubMed PMC

Javanainen M, Martinez-Seara H & Vattulainen I Excessive aggregation of membrane proteins in the Martini model. PLoS One 12, e0187936 (2017). PubMed PMC

Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-P & Sikora M Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. J. Chem. Theory Comput. 13, 5039–5053 (2017). PubMed

Alessandri R et al. Pitfalls of the Martini Model. J. Chem. Theory Comput. 15, 5448–5460 (2019). PubMed PMC

Uusitalo JJ, Ingólfsson HI, Marrink SJ & Faustino I Martini Coarse-Grained Force Field: Extension to RNA. Biophys. J. 113, 246–256 (2017). PubMed PMC

Ben-Naim A Molecular theory of solutions. (Oxford University Press, 2006).

Ploetz EA, Bentenitis N & Smith PE Kirkwood-Buff integrals for ideal solutions. J. Chem. Phys. 132, 164501 (2010). PubMed PMC

Zych AJ & Iverson BL Synthesis and Conformational Characterization of Tethered, Self-Complexing 1,5-Dialkoxynaphthalene/1,4,5,8-Naphthalenetetracarboxylic Diimide Systems. J. Am. Chem. Soc. 122, 8898–8909 (2000).

Gabriel GJ & Iverson BL Aromatic oligomers that form hetero duplexes in aqueous solution. J. Am. Chem. Soc. 124, 15174–15175 (2002). PubMed

Liu W et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012). PubMed PMC

Gao ZG & Ijzerman AP Allosteric modulation of A(2A) adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000). PubMed

Okur HI et al. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 121, 1997–2014 (2017). PubMed

Dupont D, Depuydt D & Binnemans K Overview of the Effect of Salts on Biphasic Ionic Liquid/Water Solvent Extraction Systems: Anion Exchange, Mutual Solubility, and Thermomorphic Properties. J. Phys. Chem. B 119, 6747–6757 (2015). PubMed

Naert P, Rabaey K & Stevens CV Ionic liquid ion exchange: Exclusion from strong interactions condemns cations to the most weakly interacting anions and dictates reaction equilibrium. Green Chem. 20, 4277–4286 (2018).

Khan HM et al. Capturing Choline-Aromatics Cation-πInteractions in the MARTINI Force Field. J. Chem. Theory Comput. 16, 2550–2560 (2020). PubMed PMC

Tanaka K, Caaveiro JMM, Morante K, González-Manãs JM & Tsumoto K Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun. 6, 6337 (2015). PubMed PMC

Huang G, Willems K, Soskine M, Wloka C & Maglia G Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017). PubMed PMC

Alessandri R, Uusitalo JJ, De Vries AH, Havenith RWA & Marrink SJ Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations. J. Am. Chem. Soc. 139, 3697–3705 (2017). PubMed PMC

Chiu MY, Jeng US, Su CH, Liang KS & Wei KH Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells. Adv. Mater. 20, 2573–2578 (2008).

Petrov D & Zagrovic B Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments? PLoS Comput. Biol. 10, e1003638 (2014). PubMed PMC

Højgaard C et al. A Soluble, Folded Protein without Charged Amino Acid Residues. Biochemistry 55, 3949–3956 (2016). PubMed

Ruckenstein E & Shulgin IL Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Advances in Colloid and Interface Science 123–126, 97–103 (2006). PubMed

Zhou FX, Cocco MJ, Russ WP, Brunger AT & Engelman DM Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000). PubMed

Zhou FX, Merianos HJ, Brunger AT & Engelman DM Polar residues drive association of polyleucine transmembrane helices. Proc. Natl. Acad. Sci. U. S. A. 98, 2250–2255 (2001). PubMed PMC

Grau B et al. The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 1, 90–106 (2017). PubMed PMC

Chen L, Merzlyakov M, Cohen T, Shai Y & Hristova K Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Biophys. J. 96, 4622–4630 (2009). PubMed PMC

Artemenko EO, Egorova NS, Arseniev AS & Feofanov AV Transmembrane domain of EphA1 receptor forms dimers in membrane-like environment. Biochim. Biophys. Acta 1778, 2361–7 (2008). PubMed

Sarabipour S & Hristova K Glycophorin A transmembrane domain dimerization in plasma membrane vesicles derived from CHO, HEK 293T, and A431 cells. Biochim. Biophys. Acta - Biomembr. 1828, 1829–1833 (2013). PubMed PMC

Chen L, Novicky L, Merzlyakov M, Hristov T & Hristova K Measuring the Energetics of Membrane Protein Dimerization in Mammalian Membranes. J. Am. Chem. Soc. 132, 3628–3635 (2010). PubMed PMC

Nash A, Notman R & Dixon AM De novo design of transmembrane helix-helix interactions and measurement of stability in a biological membrane. Biochim. Biophys. Acta - Biomembr. 1848, 1248–1257 (2015). PubMed

Finger C et al. The Stability of Transmembrane Helix Interactions Measured in a Biological Membrane. J. Mol. Biol. 358, 1221–1228 (2006). PubMed

Hong H, Blois TM, Cao Z & Bowie JU Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc. Natl. Acad. Sci. U. S. A. 107, 19802–19807 (2010). PubMed PMC

Sparr E et al. Self-association of transmembrane α-helices in model membranes: Importance of helix orientation and role of hydrophobic mismatch. J. Biol. Chem. 280, 39324–39331 (2005). PubMed

MacKenzie KR, Prestegard JH & Engelman DM Transmembrane helix dimer: Structure and implications. Science (80-. ). 276, 131–133 (1997). PubMed

Trenker R, Call ME & Call MJ Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase. J. Am. Chem. Soc. 137, 15676–15679 (2015). PubMed

Domański J, Sansom MSP, Stansfeld PJ & Best RB Balancing Force Field Protein–Lipid Interactions To Capture Transmembrane Helix–Helix Association. J. Chem. Theory Comput. 14, 1706–1715 (2018). PubMed PMC

Souza PCT, Thallmair S, Marrink SJ & Mera-Adasme R An Allosteric Pathway in Copper, Zinc Superoxide Dismutase Unravels the Molecular Mechanism of the G93A Amyotrophic Lateral Sclerosis-Linked Mutation. J. Phys. Chem. Lett. 10, 7740–7744 (2019). PubMed PMC

Brini E et al. Systematic coarse-graining methods for soft matter simulations-a review. Soft Matter 9, 2108–2119 (2013).

Foley TT, Shell MS & Noid WG The impact of resolution upon entropy and information in coarse-grained models. J. Chem. Phys. 143, 243104 (2015). PubMed

Wagner JW, Dama JF, Durumeric AEP & Voth GA On the representability problem and the physical meaning of coarse-grained models. J. Chem. Phys. 145, 044108 (2016). PubMed

Wörner SJ, Bereau T, Kremer K & Rudzinski JF Direct route to reproducing pair distribution functions with coarse-grained models via transformed atomistic cross correlations. J. Chem. Phys. 151, 244110 (2019). PubMed

Noid WG, Chu JW, Ayton GS & Voth GA Multiscale coarse-graining and structural correlations: Connections to liquid-state theory. J. Phys. Chem. B 111, 4116–4127 (2007). PubMed PMC

Wu Z, Cui Q & Yethiraj A Driving force for the association of hydrophobic peptides: The importance of electrostatic interactions in coarse-grained water models. J. Phys. Chem. Lett. 2, 1794–1798 (2011).

Jin J, Yu A & Voth GA Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J. Chem. Theory Comput. (2020). doi: 10.1021/acs.jctc.0c00832 PubMed DOI PMC

Yesylevskyy SO, Schäfer LV, Sengupta D & Marrink SJ Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6, e1000810 (2010). PubMed PMC

Michalowsky J, Schäfer LV, Holm C & Smiatek J A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. J. Chem. Phys. 146, 054501 (2017). PubMed

Marrink SJ & Tieleman DP Perspective on the Martini model. Chem. Soc. Rev. 42, 6801–22 (2013). PubMed

Bruininks BMH, Souza PCT & Marrink SJ A Practical View of the Martini Force Field. in Methods in Molecular Biology 2022, 105–127 (Humana Press Inc., 2019). PubMed

Liu J et al. Enhancing Molecular n-Type Doping of Donor-Acceptor Copolymers by Tailoring Side Chains. Adv. Mater. 30, 1704630 (2018). PubMed

Vazquez-Salazar LI, Selle M, de Vries A, Marrink SJ & Souza PCT Martini coarse-grained models of imidazolium-based ionic liquids: from nanostructural organization to liquid-liquid extraction. Green Chem. 22, 7376–7386 (2020).

Souza PCT et al. Protein–ligand binding with the coarse-grained Martini model. Nat. Commun. 11, 1–11 (2020). PubMed PMC

López CA et al. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J. Chem. Theory Comput. 5, 3195–3210 (2009). PubMed

Monticelli L et al. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 4, 819–834 (2008). PubMed

Grunewald F, Rossi G, de Vries AH, Marrink SJ & Monticelli L Transferable MARTINI Model of Poly(ethylene Oxide). J. Phys. Chem. B 122, 7436–7449 (2018). PubMed

de Jong DH et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 9, 687–97 (2013). PubMed

Herzog FA, Braun L, Schoen I & Vogel V Improved Side Chain Dynamics in MARTINI Simulations of Protein–Lipid Interfaces. J. Chem. Theory Comput. 12, 2446–2458 (2016). PubMed

Poma AB, Cieplak M & Theodorakis PE Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. J. Chem. Theory Comput. 13, 1366–1374 (2017). PubMed

Periole X, Cavalli M, Marrink S-J & Ceruso MA Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. J. Chem. Theory Comput. 5, 2531–2543 (2009). PubMed

Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP & de Vries AH The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed

Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP & Marrink SJ Computational Lipidomics with insane : A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J. Chem. Theory Comput. 11, 2144–2155 (2015). PubMed

Melo MN, Ingólfsson HI & Marrink SJ Parameters for Martini sterols and hopanoids based on a virtual-site description. J. Chem. Phys. 143, 243152 (2015). PubMed

López CA, Sovova Z, van Eerden FJ, de Vries AH & Marrink SJ Martini Force Field Parameters for Glycolipids. J. Chem. Theory Comput. 9, 1694–1708 (2013). PubMed

Carpenter TS et al. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. J. Chem. Theory Comput. 14, 6050–6062 (2018). PubMed

de Jong DH, Baoukina S, Ingólfsson HI & Marrink SJ Martini straight: Boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199, 1–7 (2016).

Hockney RW, Goel SP & Eastwood JW Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974).

Páll S & Hess B A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 184, 2641–2650 (2013).

Verlet L Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967).

Tironi IG, Sperb R, Smith PE & Van Gunsteren WF A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459 (1995).

Essmann U et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

Bussi G, Donadio D & Parrinello M Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed

Parrinello M & Rahman A Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

Abraham MJ et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

Van Der Spoel D et al. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). PubMed

Wassenaar TA, Ingólfsson HI, Prieß M, Marrink SJ & Schäfer LV Mixing MARTINI: Electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. J. Phys. Chem. B 117, 3516–3530 (2013). PubMed

Wassenaar TA et al. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. J. Chem. Theory Comput. 11, 2278–91 (2015). PubMed

Humphrey W, Dalke A and Schulten K VMD - Visual Molecular Dynamics. J. Molec. Graph. 14, 33–38 (1996). PubMed

Gowers RJ et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proc. 15th Python Sci. Conference 98–105 (2016).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Martini 3 Limitations in Phospholipid Flip-Flop

. 2025 Oct 14 ; 21 (19) : 9227-9233. [epub] 20250925

Navigating bacterial motility through chemotaxis: from molecular mechanisms to physiological perspectives

. 2025 Aug ; 70 (4) : 753-777. [epub] 20250809

Lipid Scrambling Pathways in the Sec61 Translocon Complex

. 2025 May 14 ; 147 (19) : 15970-15984. [epub] 20250505

Engineering cardiolipin binding to an artificial membrane protein reveals determinants for lipid-mediated stabilization

. 2025 Apr 30 ; 14 () : . [epub] 20250430

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery

. 2025 Mar 03 ; 22 (3) : 1110-1141. [epub] 20250129

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations

. 2025 Jan 27 ; 65 (2) : 908-920. [epub] 20250110

Coordination of transporter, cargo, and membrane properties during non-vesicular lipid transport

. 2024 Nov 27 ; 7 (1) : 1585. [epub] 20241127

Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7

. 2024 Oct 24 ; 15 (1) : 9163. [epub] 20241024

Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2

. 2024 Sep 05 ; 128 (35) : 8469-8476. [epub] 20240828

Pathways to a Shiny Future: Building the Foundation for Computational Physical Chemistry and Biophysics in 2050

. 2024 Jul 24 ; 4 (4) : 302-313. [epub] 20240404

Insertases scramble lipids: Molecular simulations of MTCH2

. 2024 Apr 04 ; 32 (4) : 505-510.e4. [epub] 20240219

Peptide translocation across asymmetric phospholipid membranes

. 2024 Mar 19 ; 123 (6) : 693-702. [epub] 20240215

Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes

. 2024 Jan 11 ; 15 (1) : 175-179. [epub] 20231228

Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase

. 2023 Dec 08 ; 14 (1) : 8115. [epub] 20231208

Insertases Scramble Lipids: Molecular Simulations of MTCH2

. 2023 Dec 02 ; () : . [epub] 20231202

Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport

. 2023 Jul 31 ; 12 (15) : . [epub] 20230731

Optimized OPEP Force Field for Simulation of Crowded Protein Solutions

. 2023 Apr 27 ; 127 (16) : 3616-3623. [epub] 20230418

SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering

. 2022 May 24 ; 34 (6) : 2424-2448.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...