Martini 3: a general purpose force field for coarse-grained molecular dynamics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Z99 DK999999
Intramural NIH HHS - United States
ZIA DK075104
Intramural NIH HHS - United States
PubMed
33782607
PubMed Central
PMC12554258
DOI
10.1038/s41592-021-01098-3
PII: 10.1038/s41592-021-01098-3
Knihovny.cz E-zdroje
- MeSH
- lipidové dvojvrstvy MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.
Computational Physics Laboratory Tampere University Tampere Finland
Department of Biochemistry University of Oxford Oxford UK
Department of Chemistry Aarhus University Aarhus C Denmark
Department of Chemistry and Computational Biology Unit University of Bergen Bergen Norway
Department of Physics University of Helsinki Helsinki Finland
Frankfurt Institute for Advanced Studies Frankfurt am Main Germany
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Intangible Realities Laboratory University of Bristol School of Chemistry Bristol UK
Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS and University of Lyon Lyon France
Zobrazit více v PubMed
Bottaro S & Lindorff-Larsen K Biophysical experiments and biomolecular simulations: A perfect match? Science 361, 355–360 (2018). PubMed
Ingólfsson HI et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 225–248 (2014). PubMed PMC
Marrink SJ, De Vries AH & Mark AE Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 108, 750–760 (2004).
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP & de Vries AH The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed
Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP & Marrink SJ Martini Coarse-Grained Force Field: Extension to DNA. J. Chem. Theory Comput. 11, 3932–3945 (2015). PubMed
Abellón-Ruiz J et al. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat. Microbiol. 2, 1616–1623 (2017). PubMed
Yen HY et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018). PubMed PMC
Van Eerden FJ, Melo MN, Frederix PWJM, Periole X & Marrink SJ Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat. Commun. 8, 15214 (2017). PubMed PMC
Vögele M, Köfinger J & Hummer G Hydrodynamics of Diffusion in Lipid Membrane Simulations. Phys. Rev. Lett. 120, (2018). PubMed
Agostino MD, Risselada HJ, Lürick A, Ungermann C & Mayer A A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 551, 634–638 (2017). PubMed
Jeena MT et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 8, 26 (2017). PubMed PMC
Jiang Z et al. Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 14, 912–917 (2015). PubMed
Maingi V et al. Stability and dynamics of membrane-spanning DNA nanopores. Nat. Commun. 8, 14784 (2017). PubMed PMC
Frederix PWJM et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015). PubMed
Bochicchio D, Salvalaglio M & Pavan GM Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017). PubMed PMC
Stark AC, Andrews CT & Elcock AH Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J. Chem. Theory Comput. 9, 4176–4185 (2013). PubMed PMC
Javanainen M, Martinez-Seara H & Vattulainen I Excessive aggregation of membrane proteins in the Martini model. PLoS One 12, e0187936 (2017). PubMed PMC
Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-P & Sikora M Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. J. Chem. Theory Comput. 13, 5039–5053 (2017). PubMed
Alessandri R et al. Pitfalls of the Martini Model. J. Chem. Theory Comput. 15, 5448–5460 (2019). PubMed PMC
Uusitalo JJ, Ingólfsson HI, Marrink SJ & Faustino I Martini Coarse-Grained Force Field: Extension to RNA. Biophys. J. 113, 246–256 (2017). PubMed PMC
Ben-Naim A Molecular theory of solutions. (Oxford University Press, 2006).
Ploetz EA, Bentenitis N & Smith PE Kirkwood-Buff integrals for ideal solutions. J. Chem. Phys. 132, 164501 (2010). PubMed PMC
Zych AJ & Iverson BL Synthesis and Conformational Characterization of Tethered, Self-Complexing 1,5-Dialkoxynaphthalene/1,4,5,8-Naphthalenetetracarboxylic Diimide Systems. J. Am. Chem. Soc. 122, 8898–8909 (2000).
Gabriel GJ & Iverson BL Aromatic oligomers that form hetero duplexes in aqueous solution. J. Am. Chem. Soc. 124, 15174–15175 (2002). PubMed
Liu W et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012). PubMed PMC
Gao ZG & Ijzerman AP Allosteric modulation of A(2A) adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000). PubMed
Okur HI et al. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 121, 1997–2014 (2017). PubMed
Dupont D, Depuydt D & Binnemans K Overview of the Effect of Salts on Biphasic Ionic Liquid/Water Solvent Extraction Systems: Anion Exchange, Mutual Solubility, and Thermomorphic Properties. J. Phys. Chem. B 119, 6747–6757 (2015). PubMed
Naert P, Rabaey K & Stevens CV Ionic liquid ion exchange: Exclusion from strong interactions condemns cations to the most weakly interacting anions and dictates reaction equilibrium. Green Chem. 20, 4277–4286 (2018).
Khan HM et al. Capturing Choline-Aromatics Cation-πInteractions in the MARTINI Force Field. J. Chem. Theory Comput. 16, 2550–2560 (2020). PubMed PMC
Tanaka K, Caaveiro JMM, Morante K, González-Manãs JM & Tsumoto K Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun. 6, 6337 (2015). PubMed PMC
Huang G, Willems K, Soskine M, Wloka C & Maglia G Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017). PubMed PMC
Alessandri R, Uusitalo JJ, De Vries AH, Havenith RWA & Marrink SJ Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations. J. Am. Chem. Soc. 139, 3697–3705 (2017). PubMed PMC
Chiu MY, Jeng US, Su CH, Liang KS & Wei KH Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells. Adv. Mater. 20, 2573–2578 (2008).
Petrov D & Zagrovic B Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments? PLoS Comput. Biol. 10, e1003638 (2014). PubMed PMC
Højgaard C et al. A Soluble, Folded Protein without Charged Amino Acid Residues. Biochemistry 55, 3949–3956 (2016). PubMed
Ruckenstein E & Shulgin IL Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Advances in Colloid and Interface Science 123–126, 97–103 (2006). PubMed
Zhou FX, Cocco MJ, Russ WP, Brunger AT & Engelman DM Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000). PubMed
Zhou FX, Merianos HJ, Brunger AT & Engelman DM Polar residues drive association of polyleucine transmembrane helices. Proc. Natl. Acad. Sci. U. S. A. 98, 2250–2255 (2001). PubMed PMC
Grau B et al. The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 1, 90–106 (2017). PubMed PMC
Chen L, Merzlyakov M, Cohen T, Shai Y & Hristova K Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Biophys. J. 96, 4622–4630 (2009). PubMed PMC
Artemenko EO, Egorova NS, Arseniev AS & Feofanov AV Transmembrane domain of EphA1 receptor forms dimers in membrane-like environment. Biochim. Biophys. Acta 1778, 2361–7 (2008). PubMed
Sarabipour S & Hristova K Glycophorin A transmembrane domain dimerization in plasma membrane vesicles derived from CHO, HEK 293T, and A431 cells. Biochim. Biophys. Acta - Biomembr. 1828, 1829–1833 (2013). PubMed PMC
Chen L, Novicky L, Merzlyakov M, Hristov T & Hristova K Measuring the Energetics of Membrane Protein Dimerization in Mammalian Membranes. J. Am. Chem. Soc. 132, 3628–3635 (2010). PubMed PMC
Nash A, Notman R & Dixon AM De novo design of transmembrane helix-helix interactions and measurement of stability in a biological membrane. Biochim. Biophys. Acta - Biomembr. 1848, 1248–1257 (2015). PubMed
Finger C et al. The Stability of Transmembrane Helix Interactions Measured in a Biological Membrane. J. Mol. Biol. 358, 1221–1228 (2006). PubMed
Hong H, Blois TM, Cao Z & Bowie JU Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc. Natl. Acad. Sci. U. S. A. 107, 19802–19807 (2010). PubMed PMC
Sparr E et al. Self-association of transmembrane α-helices in model membranes: Importance of helix orientation and role of hydrophobic mismatch. J. Biol. Chem. 280, 39324–39331 (2005). PubMed
MacKenzie KR, Prestegard JH & Engelman DM Transmembrane helix dimer: Structure and implications. Science (80-. ). 276, 131–133 (1997). PubMed
Trenker R, Call ME & Call MJ Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase. J. Am. Chem. Soc. 137, 15676–15679 (2015). PubMed
Domański J, Sansom MSP, Stansfeld PJ & Best RB Balancing Force Field Protein–Lipid Interactions To Capture Transmembrane Helix–Helix Association. J. Chem. Theory Comput. 14, 1706–1715 (2018). PubMed PMC
Souza PCT, Thallmair S, Marrink SJ & Mera-Adasme R An Allosteric Pathway in Copper, Zinc Superoxide Dismutase Unravels the Molecular Mechanism of the G93A Amyotrophic Lateral Sclerosis-Linked Mutation. J. Phys. Chem. Lett. 10, 7740–7744 (2019). PubMed PMC
Brini E et al. Systematic coarse-graining methods for soft matter simulations-a review. Soft Matter 9, 2108–2119 (2013).
Foley TT, Shell MS & Noid WG The impact of resolution upon entropy and information in coarse-grained models. J. Chem. Phys. 143, 243104 (2015). PubMed
Wagner JW, Dama JF, Durumeric AEP & Voth GA On the representability problem and the physical meaning of coarse-grained models. J. Chem. Phys. 145, 044108 (2016). PubMed
Wörner SJ, Bereau T, Kremer K & Rudzinski JF Direct route to reproducing pair distribution functions with coarse-grained models via transformed atomistic cross correlations. J. Chem. Phys. 151, 244110 (2019). PubMed
Noid WG, Chu JW, Ayton GS & Voth GA Multiscale coarse-graining and structural correlations: Connections to liquid-state theory. J. Phys. Chem. B 111, 4116–4127 (2007). PubMed PMC
Wu Z, Cui Q & Yethiraj A Driving force for the association of hydrophobic peptides: The importance of electrostatic interactions in coarse-grained water models. J. Phys. Chem. Lett. 2, 1794–1798 (2011).
Jin J, Yu A & Voth GA Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J. Chem. Theory Comput. (2020). doi: 10.1021/acs.jctc.0c00832 PubMed DOI PMC
Yesylevskyy SO, Schäfer LV, Sengupta D & Marrink SJ Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6, e1000810 (2010). PubMed PMC
Michalowsky J, Schäfer LV, Holm C & Smiatek J A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. J. Chem. Phys. 146, 054501 (2017). PubMed
Marrink SJ & Tieleman DP Perspective on the Martini model. Chem. Soc. Rev. 42, 6801–22 (2013). PubMed
Bruininks BMH, Souza PCT & Marrink SJ A Practical View of the Martini Force Field. in Methods in Molecular Biology 2022, 105–127 (Humana Press Inc., 2019). PubMed
Liu J et al. Enhancing Molecular n-Type Doping of Donor-Acceptor Copolymers by Tailoring Side Chains. Adv. Mater. 30, 1704630 (2018). PubMed
Vazquez-Salazar LI, Selle M, de Vries A, Marrink SJ & Souza PCT Martini coarse-grained models of imidazolium-based ionic liquids: from nanostructural organization to liquid-liquid extraction. Green Chem. 22, 7376–7386 (2020).
Souza PCT et al. Protein–ligand binding with the coarse-grained Martini model. Nat. Commun. 11, 1–11 (2020). PubMed PMC
López CA et al. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J. Chem. Theory Comput. 5, 3195–3210 (2009). PubMed
Monticelli L et al. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 4, 819–834 (2008). PubMed
Grunewald F, Rossi G, de Vries AH, Marrink SJ & Monticelli L Transferable MARTINI Model of Poly(ethylene Oxide). J. Phys. Chem. B 122, 7436–7449 (2018). PubMed
de Jong DH et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 9, 687–97 (2013). PubMed
Herzog FA, Braun L, Schoen I & Vogel V Improved Side Chain Dynamics in MARTINI Simulations of Protein–Lipid Interfaces. J. Chem. Theory Comput. 12, 2446–2458 (2016). PubMed
Poma AB, Cieplak M & Theodorakis PE Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. J. Chem. Theory Comput. 13, 1366–1374 (2017). PubMed
Periole X, Cavalli M, Marrink S-J & Ceruso MA Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. J. Chem. Theory Comput. 5, 2531–2543 (2009). PubMed
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP & de Vries AH The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed
Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP & Marrink SJ Computational Lipidomics with insane : A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J. Chem. Theory Comput. 11, 2144–2155 (2015). PubMed
Melo MN, Ingólfsson HI & Marrink SJ Parameters for Martini sterols and hopanoids based on a virtual-site description. J. Chem. Phys. 143, 243152 (2015). PubMed
López CA, Sovova Z, van Eerden FJ, de Vries AH & Marrink SJ Martini Force Field Parameters for Glycolipids. J. Chem. Theory Comput. 9, 1694–1708 (2013). PubMed
Carpenter TS et al. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. J. Chem. Theory Comput. 14, 6050–6062 (2018). PubMed
de Jong DH, Baoukina S, Ingólfsson HI & Marrink SJ Martini straight: Boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199, 1–7 (2016).
Hockney RW, Goel SP & Eastwood JW Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148–158 (1974).
Páll S & Hess B A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 184, 2641–2650 (2013).
Verlet L Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967).
Tironi IG, Sperb R, Smith PE & Van Gunsteren WF A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459 (1995).
Essmann U et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).
Bussi G, Donadio D & Parrinello M Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed
Parrinello M & Rahman A Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
Abraham MJ et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Van Der Spoel D et al. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). PubMed
Wassenaar TA, Ingólfsson HI, Prieß M, Marrink SJ & Schäfer LV Mixing MARTINI: Electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. J. Phys. Chem. B 117, 3516–3530 (2013). PubMed
Wassenaar TA et al. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. J. Chem. Theory Comput. 11, 2278–91 (2015). PubMed
Humphrey W, Dalke A and Schulten K VMD - Visual Molecular Dynamics. J. Molec. Graph. 14, 33–38 (1996). PubMed
Gowers RJ et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proc. 15th Python Sci. Conference 98–105 (2016).
Martini 3 Limitations in Phospholipid Flip-Flop
Lipid Scrambling Pathways in the Sec61 Translocon Complex
Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery
Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations
Coordination of transporter, cargo, and membrane properties during non-vesicular lipid transport
Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7
Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2
Insertases scramble lipids: Molecular simulations of MTCH2
Peptide translocation across asymmetric phospholipid membranes
Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes
Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase
Insertases Scramble Lipids: Molecular Simulations of MTCH2
Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport
Optimized OPEP Force Field for Simulation of Crowded Protein Solutions