Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21880708
PubMed Central
PMC3196076
DOI
10.1074/jbc.m111.265249
PII: S0021-9258(20)50891-0
Knihovny.cz E-zdroje
- MeSH
- inzulin prasečí chemie MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů MeSH
- metylace MeSH
- multimerizace proteinu * MeSH
- prasata MeSH
- sekundární struktura proteinů MeSH
- stabilita proteinů MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin prasečí MeSH
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.
Zobrazit více v PubMed
Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Bing X., Markussen J. (1991) J. Mol. Biol. 220, 425–433 PubMed
Weiss M. A. (2009) in Insulin and IGFs (Litwack G. Ed.) pp. 33–49, Elsevier Academic Press, Inc., San Diego, CA
Mayer J. P., Zhang F., DiMarchi R. D. (2007) Biopolymers 88, 687–713 PubMed
Hua Q. X., Shoelson S. E., Kochoyan M., Weiss M. A. (1991) Nature 354, 238–241 PubMed
Ludvigsen S., Olsen H. B., Kaarsholm N. C. (1998) J. Mol. Biol. 279, 1–7 PubMed
Xu B., Huang K., Chu Y. C., Hu S. Q., Nakagawa S., Wang S., Wang R. Y., Whittaker J., Katsoyannis P. G., Weiss M. A. (2009) J. Biol. Chem. 284, 14597–14608 PubMed PMC
Kaarsholm N. C., Ludvigsen S. (1995) Receptor 5, 1–8 PubMed
Keller D., Clausen R., Josefsen K., Led J. J. (2001) Biochemistry 40, 10732–10740 PubMed
Ludvigsen S., Roy M., Thøgersen H., Kaarsholm N. C. (1994) Biochemistry 33, 7998–8006 PubMed
Olsen H. B., Ludvigsen S., Kaarsholm N. C. (1996) Biochemistry 35, 8836–8845 PubMed
Hua Q. X., Weiss M. A. (1991) Biochemistry 30, 5505–5515 PubMed
Huang K., Xu B., Hu S. Q., Chu Y. C., Hua Q. X., Qu Y., Li B., Wang S., Wang R. Y., Nakagawa S. H., Theede A. M., Whittaker J., De Meyts P., Katsoyannis P. G., Weiss M. A. (2004) J. Mol. Biol. 341, 529–550 PubMed
Hua Q. X., Xu B., Huang K., Hu S. Q., Nakagawa S., Jia W., Wang S., Whittaker J., Katsoyannis P. G., Weiss M. A. (2009) J. Biol. Chem. 284, 14586–14596 PubMed PMC
Kristensen C., Kjeldsen T., Wiberg F. C., Schäffer L., Hach M., Havelund S., Bass J., Steiner D. F., Andersen A. S. (1997) J. Biol. Chem. 272, 12978–12983 PubMed
Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D., Sakabe K., Sakabe N., Vijayan N. M. (1988) Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 369–456 PubMed
Ciszak E., Beals J. M., Frank B. H., Baker J. C., Carter N. D., Smith G. D. (1995) Structure 3, 615–622 PubMed
Jirácek J., Záková L., Antolíková E., Watson C. J., Turkenburg J. P., Dodson G. G., Brzozowski A. M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 1966–1970 PubMed PMC
De Meyts P., Van Obberghen E., Roth J. (1978) Nature 273, 504–509 PubMed
Keefer L. M., Piron M. A., De Meyts P., Gattner H. G., Diaconescu C., Saunders D., Brandenburg D. (1981) Biochem. Biophys. Res. Commun. 100, 1229–1236 PubMed
DeFelippis M. R., Chance R. E., Frank B. H. (2001) Crit. Rev. Ther. Drug Carrier Syst. 18, 201–264 PubMed
Dodson G., Steiner D. (1998) Curr. Opin. Struct. Biol. 8, 189–194 PubMed
Brange J., Owens D. R., Kang S., Vølund A. (1990) Diabetes Care 13, 923–954 PubMed
Adams M. J., Blundell T. L., Dodson E. J., Dodson G. G., Vijayan M., Baker E. N., Harding M. M., Hodgkin D. C., Rimmer B., Sheat S. (1969) Nature 224, 491–495
Smith G. D., Pangborn W. A., Blessing R. H. (2003) Acta Crystallogr. D 59, 474–482 PubMed
Záková L., Barth T., Jirácek J., Barthová J., Zórad S. (2004) Biochemistry 43, 2323–2331 PubMed
Záková L., Kazdová L., Hanclová I., Protivínská E., Sanda M., Budesínský M., Jirácek J. (2008) Biochemistry 47, 5858–5868 PubMed
Záková L., Brynda J., Au-Alvarez O., Dodson E. J., Dodson G. G., Whittingham J. L., Brzozowski A. M. (2004) Biochemistry 43, 16293–16300 PubMed
Goldman J., Carpenter F. H. (1974) Biochemistry 13, 4566–4574 PubMed
Pittman I., 4th, Tager H. S. (1995) Biochemistry 34, 10578–10590 PubMed
Záková L., Zyka D., Jezek J., Hanclová I., Sanda M., Brzozowski A. M., Jirácek J. (2007) J. Pept. Sci. 13, 334–341 PubMed
Bromer W. W., Chance R. E. (1967) Biochim. Biophys. Acta 133, 219–223 PubMed
Lovatt A., Cooper A., Camilleri P. (1996) Eur. Biophys. J. 24, 354–357 PubMed
McPhail D., Cooper A. (1997) J. Chem. Soc. Faraday Trans. 93, 2283–2289
Otwinowski Z., Minor W. (1997) Methods Enzymol. 276, 307–326 PubMed
Bailey S. (1994) Acta Crystallogr. D 50, 760–763 PubMed
Emsley P., Cowtan K. (2004) Acta Crystallogr. D 60, 2126–2132 PubMed
Vagin A., Teplyakov A. (1997) J. Appl. Crystallogr. 30, 1022–1025
Murshudov G. N., Vagin A. A., Dodson E. J. (1997) Acta Crystallogr. D 53, 240–255 PubMed
Gauguin L., Klaproth B., Sajid W., Andersen A. S., McNeil K. A., Forbes B. E., De Meyts P. (2008) J. Biol. Chem. 283, 2604–2613 PubMed
Whittingham J. L., Edwards D. J., Antson A. A., Clarkson J. M., Dodson G. G. (1998) Biochemistry 37, 11516–11523 PubMed
Wollmer A., Gilge G., Brandenburg D., Gattner H. G. (1994) Biol. Chem. Hoppe-Seyler 375, 219–222 PubMed
Nakagawa S. H., Johansen N. L., Madsen K., Schwartz T. W., Tager H. S. (1993) Int. J. Pept. Protein Res. 42, 578–584 PubMed
Strazza S., Hunter R., Walker E., Darnall D. W. (1985) Arch. Biochem. Biophys. 238, 30–42 PubMed
Pekar A. H., Frank B. H. (1972) Biochemistry 11, 4013–4016 PubMed
Zoete V., Meuwly M., Karplus M. (2004) J. Mol. Biol. 342, 913–929 PubMed
Ganim Z., Jones K. C., Tokmakoff A. (2010) Phys. Chem. Chem. Phys. 12, 3579–3588 PubMed
Hassiepen U., Federwisch M., Mülders T., Wollmer A. (1999) Biophys. J. 77, 1638–1654 PubMed PMC
Brems D. N., Alter L. A., Beckage M. J., Chance R. E., DiMarchi R. D., Green L. K., Long H. B., Pekar A. H., Shields J. E., Frank B. H. (1992) Protein Eng. 5, 527–533 PubMed
Rahuel-Clermont S., French C. A., Kaarsholm N. C., Dunn M. F., Chou C. I. (1997) Biochemistry 36, 5837–5845 PubMed
Huus K., Havelund S., Olsen H. B., Sigurskjold B. W., van de Weert M., Frokjaer S. (2006) Biochemistry 45, 4014–4024 PubMed
Seydoux F., Malhotra O. P., Bernhard S. A. (1974) CRC Crit. Rev. Biochem. Mol. Biol. 2, 227–257 PubMed
Roy M., Brader M. L., Lee R. W., Kaarsholm N. C., Hansen J. F., Dunn M. F. (1989) J. Biol. Chem. 264, 19081–19085 PubMed
Brader M. L., Kaarsholm N. C., Lee R. W., Dunn M. F. (1991) Biochemistry 30, 6636–6645 PubMed
Choi W. E., Brader M. L., Aguilar V., Kaarsholm N. C., Dunn M. F. (1993) Biochemistry 32, 11638–11645 PubMed
Bloom C. R., Choi W. E., Brzovic P. S., Ha J. J., Huang S. T., Kaarsholm N. C., Dunn M. F. (1995) J. Mol. Biol. 245, 324–330 PubMed
Dunn M. F. (2005) Biometals 18, 295–303 PubMed
Brzovic P. S., Choi W. E., Borchardt D., Kaarsholm N. C., Dunn M. F. (1994) Biochemistry 23, 13057–13069 PubMed
DiMarchi R. D., Chance R. E., Long H. B., Shields J. E., Slieker L. J. (1994) Horm. Res. 41, 93–96 PubMed
Hedman C. A., Lindström T., Arnqvist H. J. (2001) Diabetes Care 24, 1120–1121 PubMed
Homko C., Deluzio A., Jimenez C., Kolaczynski J. W., Boden G. (2003) Diabetes Care 26, 2027–2031 PubMed
Structural integrity of the B24 site in human insulin is important for hormone functionality
PDB
3ZQR, 3ZS2