Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface

. 2011 Oct 21 ; 286 (42) : 36968-77. [epub] 20110831

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21880708
Odkazy

PubMed 21880708
PubMed Central PMC3196076
DOI 10.1074/jbc.m111.265249
PII: S0021-9258(20)50891-0
Knihovny.cz E-zdroje

Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.

Zobrazit více v PubMed

Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Bing X., Markussen J. (1991) J. Mol. Biol. 220, 425–433 PubMed

Weiss M. A. (2009) in Insulin and IGFs (Litwack G. Ed.) pp. 33–49, Elsevier Academic Press, Inc., San Diego, CA

Mayer J. P., Zhang F., DiMarchi R. D. (2007) Biopolymers 88, 687–713 PubMed

Hua Q. X., Shoelson S. E., Kochoyan M., Weiss M. A. (1991) Nature 354, 238–241 PubMed

Ludvigsen S., Olsen H. B., Kaarsholm N. C. (1998) J. Mol. Biol. 279, 1–7 PubMed

Xu B., Huang K., Chu Y. C., Hu S. Q., Nakagawa S., Wang S., Wang R. Y., Whittaker J., Katsoyannis P. G., Weiss M. A. (2009) J. Biol. Chem. 284, 14597–14608 PubMed PMC

Kaarsholm N. C., Ludvigsen S. (1995) Receptor 5, 1–8 PubMed

Keller D., Clausen R., Josefsen K., Led J. J. (2001) Biochemistry 40, 10732–10740 PubMed

Ludvigsen S., Roy M., Thøgersen H., Kaarsholm N. C. (1994) Biochemistry 33, 7998–8006 PubMed

Olsen H. B., Ludvigsen S., Kaarsholm N. C. (1996) Biochemistry 35, 8836–8845 PubMed

Hua Q. X., Weiss M. A. (1991) Biochemistry 30, 5505–5515 PubMed

Huang K., Xu B., Hu S. Q., Chu Y. C., Hua Q. X., Qu Y., Li B., Wang S., Wang R. Y., Nakagawa S. H., Theede A. M., Whittaker J., De Meyts P., Katsoyannis P. G., Weiss M. A. (2004) J. Mol. Biol. 341, 529–550 PubMed

Hua Q. X., Xu B., Huang K., Hu S. Q., Nakagawa S., Jia W., Wang S., Whittaker J., Katsoyannis P. G., Weiss M. A. (2009) J. Biol. Chem. 284, 14586–14596 PubMed PMC

Kristensen C., Kjeldsen T., Wiberg F. C., Schäffer L., Hach M., Havelund S., Bass J., Steiner D. F., Andersen A. S. (1997) J. Biol. Chem. 272, 12978–12983 PubMed

Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D., Sakabe K., Sakabe N., Vijayan N. M. (1988) Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 369–456 PubMed

Ciszak E., Beals J. M., Frank B. H., Baker J. C., Carter N. D., Smith G. D. (1995) Structure 3, 615–622 PubMed

Jirácek J., Záková L., Antolíková E., Watson C. J., Turkenburg J. P., Dodson G. G., Brzozowski A. M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 1966–1970 PubMed PMC

De Meyts P., Van Obberghen E., Roth J. (1978) Nature 273, 504–509 PubMed

Keefer L. M., Piron M. A., De Meyts P., Gattner H. G., Diaconescu C., Saunders D., Brandenburg D. (1981) Biochem. Biophys. Res. Commun. 100, 1229–1236 PubMed

DeFelippis M. R., Chance R. E., Frank B. H. (2001) Crit. Rev. Ther. Drug Carrier Syst. 18, 201–264 PubMed

Dodson G., Steiner D. (1998) Curr. Opin. Struct. Biol. 8, 189–194 PubMed

Brange J., Owens D. R., Kang S., Vølund A. (1990) Diabetes Care 13, 923–954 PubMed

Adams M. J., Blundell T. L., Dodson E. J., Dodson G. G., Vijayan M., Baker E. N., Harding M. M., Hodgkin D. C., Rimmer B., Sheat S. (1969) Nature 224, 491–495

Smith G. D., Pangborn W. A., Blessing R. H. (2003) Acta Crystallogr. D 59, 474–482 PubMed

Záková L., Barth T., Jirácek J., Barthová J., Zórad S. (2004) Biochemistry 43, 2323–2331 PubMed

Záková L., Kazdová L., Hanclová I., Protivínská E., Sanda M., Budesínský M., Jirácek J. (2008) Biochemistry 47, 5858–5868 PubMed

Záková L., Brynda J., Au-Alvarez O., Dodson E. J., Dodson G. G., Whittingham J. L., Brzozowski A. M. (2004) Biochemistry 43, 16293–16300 PubMed

Goldman J., Carpenter F. H. (1974) Biochemistry 13, 4566–4574 PubMed

Pittman I., 4th, Tager H. S. (1995) Biochemistry 34, 10578–10590 PubMed

Záková L., Zyka D., Jezek J., Hanclová I., Sanda M., Brzozowski A. M., Jirácek J. (2007) J. Pept. Sci. 13, 334–341 PubMed

Bromer W. W., Chance R. E. (1967) Biochim. Biophys. Acta 133, 219–223 PubMed

Lovatt A., Cooper A., Camilleri P. (1996) Eur. Biophys. J. 24, 354–357 PubMed

McPhail D., Cooper A. (1997) J. Chem. Soc. Faraday Trans. 93, 2283–2289

Otwinowski Z., Minor W. (1997) Methods Enzymol. 276, 307–326 PubMed

Bailey S. (1994) Acta Crystallogr. D 50, 760–763 PubMed

Emsley P., Cowtan K. (2004) Acta Crystallogr. D 60, 2126–2132 PubMed

Vagin A., Teplyakov A. (1997) J. Appl. Crystallogr. 30, 1022–1025

Murshudov G. N., Vagin A. A., Dodson E. J. (1997) Acta Crystallogr. D 53, 240–255 PubMed

Gauguin L., Klaproth B., Sajid W., Andersen A. S., McNeil K. A., Forbes B. E., De Meyts P. (2008) J. Biol. Chem. 283, 2604–2613 PubMed

Whittingham J. L., Edwards D. J., Antson A. A., Clarkson J. M., Dodson G. G. (1998) Biochemistry 37, 11516–11523 PubMed

Wollmer A., Gilge G., Brandenburg D., Gattner H. G. (1994) Biol. Chem. Hoppe-Seyler 375, 219–222 PubMed

Nakagawa S. H., Johansen N. L., Madsen K., Schwartz T. W., Tager H. S. (1993) Int. J. Pept. Protein Res. 42, 578–584 PubMed

Strazza S., Hunter R., Walker E., Darnall D. W. (1985) Arch. Biochem. Biophys. 238, 30–42 PubMed

Pekar A. H., Frank B. H. (1972) Biochemistry 11, 4013–4016 PubMed

Zoete V., Meuwly M., Karplus M. (2004) J. Mol. Biol. 342, 913–929 PubMed

Ganim Z., Jones K. C., Tokmakoff A. (2010) Phys. Chem. Chem. Phys. 12, 3579–3588 PubMed

Hassiepen U., Federwisch M., Mülders T., Wollmer A. (1999) Biophys. J. 77, 1638–1654 PubMed PMC

Brems D. N., Alter L. A., Beckage M. J., Chance R. E., DiMarchi R. D., Green L. K., Long H. B., Pekar A. H., Shields J. E., Frank B. H. (1992) Protein Eng. 5, 527–533 PubMed

Rahuel-Clermont S., French C. A., Kaarsholm N. C., Dunn M. F., Chou C. I. (1997) Biochemistry 36, 5837–5845 PubMed

Huus K., Havelund S., Olsen H. B., Sigurskjold B. W., van de Weert M., Frokjaer S. (2006) Biochemistry 45, 4014–4024 PubMed

Seydoux F., Malhotra O. P., Bernhard S. A. (1974) CRC Crit. Rev. Biochem. Mol. Biol. 2, 227–257 PubMed

Roy M., Brader M. L., Lee R. W., Kaarsholm N. C., Hansen J. F., Dunn M. F. (1989) J. Biol. Chem. 264, 19081–19085 PubMed

Brader M. L., Kaarsholm N. C., Lee R. W., Dunn M. F. (1991) Biochemistry 30, 6636–6645 PubMed

Choi W. E., Brader M. L., Aguilar V., Kaarsholm N. C., Dunn M. F. (1993) Biochemistry 32, 11638–11645 PubMed

Bloom C. R., Choi W. E., Brzovic P. S., Ha J. J., Huang S. T., Kaarsholm N. C., Dunn M. F. (1995) J. Mol. Biol. 245, 324–330 PubMed

Dunn M. F. (2005) Biometals 18, 295–303 PubMed

Brzovic P. S., Choi W. E., Borchardt D., Kaarsholm N. C., Dunn M. F. (1994) Biochemistry 23, 13057–13069 PubMed

DiMarchi R. D., Chance R. E., Long H. B., Shields J. E., Slieker L. J. (1994) Horm. Res. 41, 93–96 PubMed

Hedman C. A., Lindström T., Arnqvist H. J. (2001) Diabetes Care 24, 1120–1121 PubMed

Homko C., Deluzio A., Jimenez C., Kolaczynski J. W., Boden G. (2003) Diabetes Care 26, 2027–2031 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn2+ levels

. 2020 Oct ; 10 (10) : 200137. [epub] 20201021

A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding

. 2018 Oct 26 ; 293 (43) : 16818-16829. [epub] 20180913

Structural and functional study of the GlnB22-insulin mutant responsible for maturity-onset diabetes of the young

. 2014 ; 9 (11) : e112883. [epub] 20141125

Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

. 2014 Oct ; 70 (Pt 10) : 2765-74. [epub] 20140927

Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin

. 2014 Jun 03 ; 53 (21) : 3392-402. [epub] 20140522

Structural integrity of the B24 site in human insulin is important for hormone functionality

. 2013 Apr 12 ; 288 (15) : 10230-40. [epub] 20130227

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...