Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
20133841
PubMed Central
PMC2836629
DOI
10.1073/pnas.0911785107
PII: 0911785107
Knihovny.cz E-zdroje
- MeSH
- CD antigeny metabolismus MeSH
- inzulin analogy a deriváty chemie metabolismus MeSH
- kinetika MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- podjednotky proteinů MeSH
- receptor inzulinu metabolismus MeSH
- sekundární struktura proteinů MeSH
- statická elektřina MeSH
- techniky in vitro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
- INSR protein, human MeSH Prohlížeč
- inzulin MeSH
- podjednotky proteinů MeSH
- receptor inzulinu MeSH
Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B(26)). They show a structural convergence in the form of a new beta-turn at B(24)-B(26). We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the beta-turn at B(24)-B(26) associated with a trans to cis isomerisation at the B(25)-B(26) peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B(25)-B(26) peptide bond or by the insertion of certain D-amino acids at B(26). The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.
Zobrazit více v PubMed
Adams MJ, et al. Structure of rhombohedral 2 zinc insulin crystals. Nature. 1969;224:491–495.
Derewenda U, et al. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. a completely inactive analogue. J Mol Biol. 1991;220:425–433. PubMed
Weiss MA. In: Insulin and IGFs. Litwack G, editor. San Diego: Elsevier Academic, Inc; 2009. pp. 33–49.
Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers. 2007;88:687–713. PubMed
Ludvigsen S, Roy M, Thogersen H, Kaarsholm NC. High-resolution structure of an engineered biologically potent insulin monomer, B16 Tyr -- > His, as determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1994;33:7998–8006. PubMed
Bocian W, et al. Structure of human insulin monomer in water/acetonitrile solution. J Biomol NMR. 2008;40:55–64. PubMed
Hua QX, Weiss MA. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry. 1991;30:5505–5515. PubMed
Hua QX, Shoelson SE, Kochoyan M, Weiss MA. Receptor binding redefined by a structural switch in a mutant human insulin. Nature. 1991;354:238–241. PubMed
Ludvigsen S, Olsen HB, Kaarsholm NC. A structural switch in a mutant insulin exposes key residues for receptor binding. J Mol Biol. 1998;279:1–7. PubMed
Xu B, et al. Decoding the cryptic active conformation of a protein by synthetic photoscanning insulin inserts a detachable arm between receptor domains. J Biol Chem. 2009;284:14597–14608. PubMed PMC
McKern NM, et al. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature. 2006;443:218–221. PubMed
Zoete V, Meuwly M, Karplus M. A comparison of the dynamic behavior of monomeric and dimeric insulin shows structural rearrangements in the active monomer. J Mol Biol. 2004;342:913–929. PubMed
Pittman I, Tager HS. A spectroscopic investigation of the conformational dynamics of insulin in solution. Biochemistry. 1995;34:10578–10590. PubMed
Kristensen C, et al. Alanine scanning mutagenesis of insulin. J Biol Chem. 1997;272:12978–12983. PubMed
Mirmira RG, Nakagawa SH, Tager HS. Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. J Biol Chem. 1991;266:1428–1436. PubMed
Brange J, Owens DR, Kang S, Volund A. Monomeric insulins and their experimental and clinical implications. Diabetes Care. 1990;13:923–954. PubMed
Haneda M, Chan SJ, Kwok SC, Rubenstein AH, Steiner DF. Studies on mutant human insulin genes: Identification and sequence analysis of a gene encoding [SerB24]insulin. P Natl Acad Sci USA. 1983;80:6366–6370. PubMed PMC
Xu B, et al. Chiral mutagenesis of insulin’s hidden receptor-binding surface: Structure of an allo-isoleucine(A2) analogue. J Mol Biol. 2002;316:435–441. PubMed
Pullen RA, et al. Receptor-binding region of insulin. Nature. 1976;259:369–373. PubMed
De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat Rev Drug Discov. 2002;1:769–783. PubMed
Zakova L, et al. The use of Fmoc-Lys(Pac)-OH and penicillin G acylase in the preparation of novel semisynthetic insulin analogs. J Pept Sci. 2007;13:334–341. PubMed
Zakova L, et al. Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry. 2008;47:5858–5868. PubMed
Kurapkat G, et al. The solution structure of a superpotent B-chain-shortened single- replacement insulin analogue. Protein Sci. 1999;8:499–508. PubMed PMC
Zakova L, et al. Toward the insulin-IGF-I intermediate structures: Functional and structural properties of the [Tyr(B25)NMePhe(B26)] insulin mutant. Biochemistry. 2004;43:16293–16300. PubMed
Nakagawa SH, Johansen NL, Madsen K, Schwartz TW, Tager HS. Implications of replacing peptide bonds in the COOH-terminal B chain domain of insulin by the ψ(CH2-NH) linker. Int J Pept Protein Res. 1993;42:578–584. PubMed
Pal D, Chakrabarti P. Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J Mol Biol. 1999;294:271–288. PubMed
Sykora D, Zakova L, Budesinsky M. High-performance liquid chromatography and nuclear magnetic resonance study of linear tetrapeptides and octapeptides containing N-methylated amino acid residues. J Chromatogr A. 2007;1160:128–136. PubMed
Fischer G. Chemical aspects of peptide bond isomerisation. Chem Soc Rev. 2000;29:119–127.
Harrison RK, Stein RL. Mechanistic studies of enzymatic and nonenzymic prolyl cis-trans isomerization. J Am Chem Soc. 1992;114:3464–3471.
Ward CW, Lawrence MC. Ligand-induced activation of the insulin receptor: A multi-step process involving structural changes in both the ligand and the receptor. Bioessays. 2009;31:422–434. PubMed
Hua QX, Ladbury JE, Weiss MA. Dynamics of a monomeric insulin analogue: Testing the molten-globule hypothesis. Biochemistry. 1993;32:1433–1442. PubMed
Smith GD, Pangborn WA, Blessing RH. The structure of T-6 human insulin at 1.0 angstrom resolution. Acta Crystallogr D. 2003;59:474–482. PubMed
Otwinowski Z, Minor W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276A:307–326. PubMed
Bailey S. Collaborative computational project, number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr D. 1994;50:760–763. PubMed
Rational steering of insulin binding specificity by intra-chain chemical crosslinking
Structural integrity of the B24 site in human insulin is important for hormone functionality
Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface