Structural integrity of the B24 site in human insulin is important for hormone functionality
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K000179/1
Medical Research Council - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
23447530
PubMed Central
PMC3624407
DOI
10.1074/jbc.m112.448050
PII: S0021-9258(20)67249-0
Knihovny.cz E-zdroje
- MeSH
- inzulin chemie genetika metabolismus MeSH
- lidé MeSH
- receptor inzulinu chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- vazba proteinů fyziologie MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin MeSH
- receptor inzulinu MeSH
Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to D-amino acids but not to L-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [D-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the L-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [D-HisB24]-insulin is more flexible, and the reverse chirality of the B24C(α) atom swayed the D-His(B24) side chain into the solvent. Furthermore, the pocket vacated by Phe(B24) is filled by Phe(B25), which mimics the Phe(B24) side and main chains. The B25→B24 downshift results in a subsequent downshift of Tyr(B26) into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic L-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation.
Zobrazit více v PubMed
Ward C. W., Lawrence M. C. (2009) Ligand-induced activation of the insulin receptor. A multi-step process involving structural changes in both the ligand and the receptor. Bioessays 31, 422–434 PubMed
Steiner D. F. (2011) Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286, 17399–17421 PubMed PMC
Antolíková E., Žáková L., Turkenburg J. P., Watson C. J., Hančlová I., Šanda M., Cooper A., Kraus T., Brzozowski A. M., Jiráček J. (2011) Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface. J. Biol. Chem. 286, 36968–36977 PubMed PMC
Pullen R. A., Lindsay D. G., Wood S. P., Tickle I. J., Blundell T. L., Wollmer A., Krail G., Brandenburg D., Zahn H., Gliemann J., Gammeltoft S. (1976) Receptor binding region of insulin. Nature 259, 369–373 PubMed
Menting J. G., Whittaker J., Margetts M. B., Whittaker L. J., Kong G. K., Smith B. J., Watson C. J., Záková L., Kletvíková E., Jiráček J., Chan S. J., Steiner D. F., Dodson G. G., Brzozowski A. M., Weiss M. A., Ward C. W., Lawrence M. C. (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 PubMed PMC
Dodson E. J., Dodson G. G., Hubbard R. E., Reynolds C. D. (1983) Insulin's structural behavior and its relation to activity. Biopolymers 22, 281–291 PubMed
Hua Q. X., Shoelson S. E., Kochoyan M., Weiss M. A. (1991) Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354, 238–241 PubMed
De Meyts P., Van Obberghen E., Roth J. (1978) Mapping of the residues responsible for the negative cooperativity of the receptor binding region of insulin. Nature 273, 504–509 PubMed
Weiss M. A. (2009) in Insulin and IGFs, pp. 33–49, Elsevier Academic Press, Inc., San Diego, CA
Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Bing X., Markussen J. (1991) X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J. Mol. Biol. 220, 425–433 PubMed
Mayer J. P., Zhang F., DiMarchi R. D. (2007) Insulin structure and function. Biopolymers 88, 687–713 PubMed
Ludvigsen S., Roy M., Thøgersen H., Kaarsholm N. C. (1994) High resolution structure of an engineered biologically potent insulin monomer, B16 Tyr→His, as determined by nuclear magnetic resonance spectroscopy. Biochemistry 33, 7998–8006 PubMed
Hua Q. X., Hu S. Q., Frank B. H., Jia W., Chu Y. C., Wang S. H., Burke G. T., Katsoyannis P. G., Weiss M. A. (1996) Mapping the functional surface of insulin by design. Structure and function of a novel A-chain analogue. J. Mol. Biol. 264, 390–403 PubMed
Weiss M. A., Hua Q. X., Lynch C. S., Frank B. H., Shoelson S. E. (1991) Heteronuclear two-dimensional NMR studies of an engineered insulin monomer. Assignment and characterization of the receptor binding surface by selective 2H and 13C labeling with application to protein design. Biochemistry 30, 7373–7389 PubMed
Hua Q. X., Weiss M. A. (1991) Comparative two-dimensional NMR studies of human insulin and des-pentapeptide insulin. Sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry 30, 5505–5515 PubMed
Kurapkat G., Siedentop M., Gattner H. G., Hagelstein M., Brandenburg D., Grötzinger J., Wollmer A. (1999) The solution structure of a superpotent B chain-shortened single-replacement insulin analogue. Protein Sci. 8, 499–508 PubMed PMC
Hua Q. X., Xu B., Huang K., Hu S. Q., Nakagawa S., Jia W., Wang S., Whittaker J., Katsoyannis P. G., Weiss M. A. (2009) Enhancing the activity of a protein by stereospecific unfolding. Conformational life cycle of insulin and its evolutionary origins. J. Biol. Chem. 284, 14586–14596 PubMed PMC
Xu B., Huang K., Chu Y. C., Hu S. Q., Nakagawa S., Wang S., Wang R. Y., Whittaker J., Katsoyannis P. G., Weiss M. A. (2009) Decoding the cryptic active conformation of a protein by synthetic photoscanning. Insulin inserts a detachable arm between receptor domains. J. Biol. Chem. 284, 14597–14608 PubMed PMC
Jirácek J., Záková L., Antolíková E., Watson C. J., Turkenburg J. P., Dodson G. G., Brzozowski A. M. (2010) Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc. Natl. Acad. Sci. U.S.A. 107, 1966–1970 PubMed PMC
Mirmira R. G., Nakagawa S. H., Tager H. S. (1991) Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. J. Biol. Chem. 266, 1428–1436 PubMed
Shoelson S. E., Lu Z. X., Parlautan L., Lynch C. S., Weiss M. A. (1992) Mutations at the dimer, hexamer, and receptor binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions. Biochemistry 31, 1757–1767 PubMed
Shoelson S., Fickova M., Haneda M., Nahum A., Musso G., Kaiser E. T., Rubenstein A. H., Tager H. (1983) Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution. Proc. Natl. Acad. Sci. U.S.A. 80, 7390–7394 PubMed PMC
Inouye K., Watanabe K., Tochino Y., Kanaya T., Kobayashi M., Shigeta Y. (1981) Semisynthesis and biological properties of the [B24-leucine], [B25-leucine] and [B24-leucine, B25-leucine] analogues of human insulin. Experientia 37, 811–813 PubMed
Wollmer A., Strassburger W., Glatter U., Dodson G. G., McCall M., Gattner H. G., Danho W., Brandenburg D., Rittel W. (1981) Two mutant forms of human insulin. Structural consequences of the substitution of invariant B24- or B25-phenylalanine by leucine. Hoppe Seyler's Z. Physiol. Chem. 362, 581–591 PubMed
Tager H., Thomas N., Assoian R., Rubenstein A., Saekow M., Olefsky J., Kaiser E. T. (1980) Semisynthesis and biological activity of porcine [LeuB24]insulin and [LeuB25]insulin. Proc. Natl. Acad. Sci. U.S.A. 77, 3181–3185 PubMed PMC
Gattner H. G., Danho W., Behn C., Zahn H. (1980) The preparation of two mutant forms of human insulin, containing leucine in position B24 or B25, by enzyme-assisted synthesis. Hoppe Seyler's Z. Physiol. Chem. 361, 1135–1138 PubMed
Inouye K., Watanabe K., Tochino Y., Kobayashi M., Shigeta Y. (1981) Semisynthesis and properties of some insulin analogs. Biopolymers 20, 1845–1858 PubMed
Keefer L. M., Piron M. A., De Meyts P., Gattner H. G., Diaconescu C., Saunders D., Brandenburg D. (1981) Impaired negative cooperativity of the semisynthetic analogues human [LeuB24] and [LeuB25] insulins. Biochem. Biophys. Res. Commun. 100, 1229–1236 PubMed
Assoian R. K., Thomas N. E., Kaiser E. T., Tager H. S. (1982) [LeuB24]insulin and [AlaB24]insulin- altered structures and cellular processing of B24-substituted insulin analogs. Proc. Natl. Acad. Sci. U.S.A. 79, 5147–5151 PubMed PMC
Mirmira R. G., Tager H. S. (1989) Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor. Importance of main chain conformation. J. Biol. Chem. 264, 6349–6354 PubMed
Svoboda I., Brandenburg D., Barth T., Gattner H. G., Jirácek J., Velek J., Bláha I., Ubik K., Kasicka V., Pospísek J. (1994) Semisynthetic insulin analogues modified in positions B24, B25, and B29. Biol. Chem. Hoppe Seyler 375, 373–378 PubMed
Nakagawa S. H., Tager H. S. (1993) Importance of main-chain flexibility and the insulin fold in insulin-receptor interactions. Biochemistry 32, 7237–7243 PubMed
Casaretto M., Spoden M., Diaconescu C., Gattner H. G., Zahn H., Brandenburg D., Wollmer A. (1987) Shortened insulin with enhanced in vitro potency. Biol. Chem. Hoppe Seyler 368, 709–716 PubMed
Záková L., Zyka D., Jezek J., Hanclová I., Sanda M., Brzozowski A. M., Jirácek J. (2007) The use of Fmoc-Lys(Pac)-OH and penicillin G acylase in the preparation of novel semisynthetic insulin analogs. J. Pept. Sci. 13, 334–341 PubMed
Záková L., Kazdová L., Hanclová I., Protivínská E., Sanda M., Budesínský M., Jirácek J. (2008) Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry 47, 5858–5868 PubMed
Morcavallo A., Genua M., Palummo A., Kletvikova E., Jiracek J., Brzozowski A. M., Iozzo R. V., Belfiore A., Morrione A. (2012) Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J. Biol. Chem. 287, 11422–11436 PubMed PMC
Otwinowski Z., Minor W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 PubMed
Collaborative Computational Project, Number 4 (1994) The CCP4 Suite. Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 PubMed
Emsley P., Cowtan K. (2004) Coot. Model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 PubMed
Vagin A., Teplyakov A. (1997) MOLREP. An automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025
Smith G. D., Pangborn W. A., Blessing R. H. (2003) The structure of T-6 human insulin at 1.0 angstrom resolution. Acta Crystallogr. D. 59, 474–482 PubMed
Murshudov G. N., Vagin A. A., Dodson E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. 53, 240–255 PubMed
Herrmann T., Güntert P., Wüthrich K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 PubMed
Güntert P., Wüthrich K. (1991) Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J. Biomol. NMR 1, 447–456 PubMed
Case D. A., Cheatham T. E., 3rd, Darden T., Gohlke H., Luo R., Merz K. M., Jr., Onufriev A., Simmerling C., Wang B., Woods R. J. (2005) The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 PubMed PMC
Tsui V., Case D. A. (2000) Molecular dynamics simulations of nucleic acids with a generalized born solvation model. J. Am. Chem. Soc. 122, 2489–2498
Koradi R., Billeter M., Wüthrich K. (1996) MOLMOL. A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 PubMed
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935
Berendsen H. J. C., Postma J. P. M., Vangunsteren W. F., Dinola A., Haak J. R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690
Kurtzhals P., Schäffer L., Sørensen A., Kristensen C., Jonassen I., Schmid C., Trüb T. (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49, 999–1005 PubMed
Ciszak E., Beals J. M., Frank B. H., Baker J. C., Carter N. D., Smith G. D. (1995) Role of C-terminal B-chain residues in insulin assembly. The structure of hexameric LysB28ProB29-human insulin. Structure 3, 615–622 PubMed
Brange J., Ribel U., Hansen J. F., Dodson G., Hansen M. T., Havelund S., Melberg S. G., Norris F., Norris K., Snel L. (1988) Monomeric insulins obtained by protein engineering and their medical implications. Nature 333, 679–682 PubMed
Yao Z. P., Zeng Z. H., Li H. M., Zhang Y., Feng Y. M., Wang D. C. (1999) Structure of an insulin dimer in an orthorhombic crystal. The structure analysis of a human insulin mutant (B9 Ser→Glu). Acta Crystallogr. D. 55, 1524–1532 PubMed
Whittingham J. L., Scott D. J., Chance K., Wilson A., Finch J., Brange J., Dodson G. G. (2002) Insulin at pH 2. structural analysis of the conditions promoting insulin fibre formation. J. Mol. Biol. 318, 479–490 PubMed
Ludvigsen S., Olsen H. B., Kaarsholm N. C. (1998) A structural switch in a mutant insulin exposes key residues for receptor binding. J. Mol. Biol. 279, 1–7 PubMed
Cosgrove M. S., Loh S. N., Ha J. H., Levy H. R. (2002) The catalytic mechanism of glucose-6-phosphate dehydrogenases. Assignment and H-1 NMR spectroscopy pH titration of the catalytic histidine residue in the 109-kDa Leuconostoc mesenteroides enzyme. Biochemistry 41, 6939–6945 PubMed
Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 319, 369–456 PubMed
Gauguin L., Klaproth B., Sajid W., Andersen A. S., McNeil K. A., Forbes B. E., De Meyts P. (2008) Structural basis for the lower affinity of the insulin-like growth factors for the insulin receptor. J. Biol. Chem. 283, 2604–2613 PubMed
Hua Q. X., Shoelson S. E., Weiss M. A. (1992) Nonlocal structural perturbations in a mutant human insulin. Sequential resonance assignment and 13C-isotope-aided two-dimensional NMR studies of [PheB24→Gly]insulin with implications for receptor recognition. Biochemistry 31, 11940–11951 PubMed
Glendorf T., Stidsen C. E., Norrman M., Nishimura E., Sorensen A. R., Kjeldsen T. (2011) Engineering of insulin receptor isoform-selective insulin analogues. PLoS ONE 6, e20288. PubMed PMC
Zoete V., Meuwly M., Karplus M. (2004) A comparison of the dynamic behavior of monomeric and dimeric insulin shows structural rearrangements in the active monomer. J. Mol. Biol. 342, 913–929 PubMed
Zoete V., Meuwly M. (2006) Importance of individual side chains for the stability of a protein fold. Computational alanine scanning of the insulin monomer. J. Comput. Chem. 27, 1843–1857 PubMed
Tran T. T., Treutlein H., Burgess A. W. (2006) Designing amino acid residues with single conformations. Protein Eng. Des. Sel. 19, 401–408 PubMed
Drejer K., Kruse V., Larsen U. D., Hougaard P., Bjørn S., Gammeltoft S. (1991) Receptor binding and tyrosine kinase activation by insulin analogs with extreme affinities studied in human hepatoma HepG2 cells. Diabetes 40, 1488–1495 PubMed
Rational steering of insulin binding specificity by intra-chain chemical crosslinking
Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus
PDB
2M2M, 2M2N, 2M2O, 2M2P, 3ZI3