Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K000179/1
Medical Research Council - United Kingdom
PubMed
24819248
PubMed Central
PMC4047818
DOI
10.1021/bi500073z
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- inzulin analogy a deriváty chemie MeSH
- krystalografie rentgenová MeSH
- kyseliny aminoisomáselné chemie MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-aminoisobutyric acid MeSH Prohlížeč
- inzulin MeSH
- kyseliny aminoisomáselné MeSH
The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin-insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1-B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the "classical" T-state and that a substantial flexibility of the B1-B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin-IR interaction.
Zobrazit více v PubMed
Steiner D. F.; Chan S. J.; Welsh J. M.; Kwok S. C. (1985) Structure and evolution of the insulin gene. Annu. Rev. Genet. 19, 463–484. PubMed
Baker E. N.; Blundell T. L.; Cutfield J. F.; Cutfield S. M.; Dodson E. J.; Dodson G. G.; Hodgkin D. M.; Hubbard R. E.; Isaacs N. W.; Reynolds C. D. (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos. Trans. R. Soc. London, Ser. B 319, 369–456. PubMed
Mirmira R. G.; Nakagawa S. H.; Tager H. S. (1991) Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. J. Biol. Chem. 266, 1428–1436. PubMed
Nakagawa S. H.; Tager H. S. (1987) Role of the COOH-terminal B-chain domain in insulin-receptor interactions. Identification of perturbations involving the insulin mainchain. J. Biol. Chem. 262, 12054–12058. PubMed
Zakova L.; Kazdova L.; Hanclova I.; Protivinska E.; Sanda M.; Budesinsky M.; Jiracek J. (2008) Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry 47, 5858–5868. PubMed
Zakova L.; Barth T.; Jiracek J.; Barthova J.; Zorad S. (2004) Shortened insulin analogues: Marked changes in biological activity resulting from replacement of TyrB26 and N-methylation of peptide bonds in the C-terminus of the B-chain. Biochemistry 43, 2323–2331. PubMed
Antolikova E.; Zakova L.; Turkenburg J. P.; Watson C. J.; Hanclova I.; Sanda M.; Cooper A.; Kraus T.; Brzozowski A. M.; Jiracek J. (2011) Non-equivalent Role of Inter- and Intramolecular Hydrogen Bonds in the Insulin Dimer Interface. J. Biol. Chem. 286, 36968–36977. PubMed PMC
De Meyts P.; Whittaker J. (2002) Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat. Rev. Drug Discovery 1, 769–783. PubMed
Pullen R. A.; Lindsay D. G.; Wood S. P.; Tickle I. J.; Blundell T. L.; Wollmer A.; Krail G.; Brandenburg D.; Zahn H.; Gliemann J.; Gammeltoft S. (1976) Receptor-binding region of insulin. Nature 259, 369–373. PubMed
Menting J. G.; Whittaker J.; Margetts M. B.; Whittaker L. J.; Kong G. K. W.; Smith B. J.; Watson C. J.; Zakova L.; Kletvikova E.; Jiracek J.; Chan S. J.; Steiner D. F.; Dodson G. G.; Brzozowski A. M.; Weiss M. A.; Ward C. W.; Lawrence M. C. (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245. PubMed PMC
Xu B.; Huang K.; Chu Y. C.; Hu S. Q.; Nakagawa S.; Wang S. H.; Wang R. Y.; Whittaker J.; Katsoyannis P. G.; Weiss M. A. (2009) Decoding the Cryptic Active Conformation of a Protein by Synthetic Photoscanning. J. Biol. Chem. 284, 14597–14608. PubMed PMC
Dodson E. J.; Dodson G. G.; Hubbard R. E.; Reynolds C. D. (1983) Insulin’s structural behavior and its relation to activity. Biopolymers 22, 281–291. PubMed
Jiracek J.; Zakova L.; Antolikova E.; Watson C. J.; Turkenburg J. P.; Dodson G. G.; Brzozowski A. M. (2010) Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc. Natl. Acad. Sci. U.S.A. 107, 1966–1970. PubMed PMC
Zakova L.; Kletvikova E.; Veverka V.; Lepsik M.; Watson C. J.; Turkenburg J. P.; Jiracek J.; Brzozowski A. M. (2013) Structural integrity of the B24 site in human insulin is important for hormone functionality. J. Biol. Chem. 288, 10230–10240. PubMed PMC
De Meyts P.; Van Obberghen E.; Roth J. (1978) Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature 273, 504–509. PubMed
Derewenda U.; Derewenda Z.; Dodson E. J.; Dodson G. G.; Reynolds C. D.; Smith G. D.; Sparks C.; Swenson D. (1989) Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 338, 594–596. PubMed
Kaarsholm N. C.; Ko H. C.; Dunn M. F. (1989) Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry 28, 4427–4435. PubMed
Smith G. D.; Dodson G. G. (1992) The Structure of a Rhombohedral R6 Insulin Hexamer That Binds Phenol. Biopolymers 32, 441–445. PubMed
Choi W. E.; Borchardt D.; Kaarsholm N. C.; Brzovic P. S.; Dunn M. F. (1996) Spectroscopic evidence for preexisting T- and R-state insulin hexamer conformations. Proteins: Struct., Funct., Genet. 26, 377–390. PubMed
Roy M.; Brader M. L.; Lee R. W.; Kaarsholm N. C.; Hansen J. F.; Dunn M. F. (1989) Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. J. Biol. Chem. 264, 19081–19085. PubMed
Shneine J.; Voswinkel M.; Federwisch M.; Wollmer A. (2000) Enhancing the T → R transition of insulin by helix-promoting sequence modifications at the N-terminal B-chain. Biol. Chem. 381, 127–133. PubMed
Wan Z. L.; Huang K.; Hu S. Q.; Whittaker J.; Weiss M. A. (2008) The structure of a mutant insulin uncouples receptor binding from protein allostery: An electrostatic block to the TR transition. J. Biol. Chem. 283, 21198–21210. PubMed PMC
Bentley G.; Dodson E.; Dodson G.; Hodgkin D.; Mercola D. (1976) Structure of insulin in 4-zinc insulin. Nature 261, 166–168. PubMed
Ciszak E.; Smith G. D. (1994) Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer. Biochemistry 33, 1512–1517. PubMed
Jacoby E.; Kruger P.; Karatas Y.; Wollmer A. (1993) Distinction of Structural Reorganization and Ligand-Binding in the T→ R Transition of Insulin on the Basis of Allosteric Models. Biol. Chem. Hoppe-Seyler 374, 877–885. PubMed
Brzovic P. S.; Choi W. E.; Borchardt D.; Kaarsholm N. C.; Dunn M. F. (1994) Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer. Biochemistry 33, 13057–13069. PubMed
Smith G. D.; Dodson G. G. (1992) Structure of a Rhombohedral R6 Insulin Phenol Complex. Proteins: Struct., Funct., Genet. 14, 401–408. PubMed
Wollmer A.; Rannefeld B.; Johansen B. R.; Hejnaes K. R.; Balschmidt P.; Hansen F. B. (1987) Phenol-Promoted Structural Transformation of Insulin in Solution. Biol. Chem. Hoppe-Seyler 368, 903–911. PubMed
Nakagawa S. H.; Zhao M.; Hua Q. X.; Hu S. Q.; Wan Z. L.; Jia W.; Weiss M. A. (2005) Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain. Biochemistry 44, 4984–4999. PubMed PMC
Weiss M. A. (2009) The Structure and Function of Insulin: Decoding the TR Transition. In Insulin and IGFs (Litwack G., Ed.) pp 33–49, Academic Press, New York. PubMed PMC
Vinther T. N.; Norrman M.; Ribel U.; Huus K.; Schlein M.; Steensgaard D. B.; Pedersen T. A.; Pettersson I.; Ludvigsen S.; Kjeldsen T.; Jensen K. J.; Hubalek F. (2013) Insulin analog with additional disulfide bond has increased stability and preserved activity. Protein Sci. 22, 296–305. PubMed PMC
Hua Q. X.; Nakagawa S.; Hu S. Q.; Jia W.; Wang S.; Weiss M. A. (2006) Toward the active conformation of insulin: Stereospecific modulation of a structural switch in the B chain. J. Biol. Chem. 281, 24900–24909. PubMed
Becker R. H. A. (2007) Insulin glulisine complementing basal insulins: A review of structure and activity. Diabetes Technol. Ther. 9, 109–121. PubMed
Marshall G. R.; Hodgkin E. E.; Langs D. A.; Smith G. D.; Zabrocki J.; Leplawy M. T. (1990) Factors Governing Helical Preference of Peptides Containing Multiple α,α-Dialkyl Amino-Acids. Proc. Natl. Acad. Sci. U.S.A. 87, 487–491. PubMed PMC
Karle I. L.; Balaram P. (1990) Structural Characteristics of α-Helical Peptide Molecules Containing Aib Residues. Biochemistry 29, 6747–6756. PubMed
Ciszak E.; Beals J. M.; Frank B. H.; Baker J. C.; Carter N. D.; Smith G. D. (1995) Role of C-terminal B-chain residues in insulin assembly: The structure of hexameric LysB28ProB29-human insulin. Structure 3, 615–622. PubMed
Wang S. H.; Hu S. Q.; Burke G. T.; Katsoyannis P. G. (1991) Insulin analogues with modifications in the β-turn of the B-chain. J. Protein Chem. 10, 313–324. PubMed
Chance R. E., Hoffmann J. A., Kroeff E. P., Johnson M. G., Schirmer E. W., and Bromer W. W. (1981) The production of human insulin using recombinant DNA technology and a new chain combination procedure. In Proceedings of the 7th American Peptide Symposium (Rich D. H., and Gross E., Eds.) pp 721–728, Pierce Chemical Co., Rockford, IL.
Morcavallo A.; Genua M.; Palummo A.; Kletvikova E.; Jiracek J.; Brzozowski A. M.; Iozzo R. V.; Belfiore A.; Morrione A. (2012) Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A. J. Biol. Chem. 287, 11422–11436. PubMed PMC
Swillens S. (1995) Interpretation of Binding Curves Obtained with High Receptor Concentrations: Practical Aid for Computer-Analysis. Mol. Pharmacol. 47, 1197–1203. PubMed
Herrmann T.; Guntert P.; Wuthrich K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227. PubMed
Guntert P.; Wuthrich K. (1991) Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J. Biomol. NMR 1, 447–456. PubMed
Harjes E.; Harjes S.; Wohlgemuth S.; Muller K. H.; Krieger E.; Herrmann C.; Bayer P. (2006) GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14, 881–888. PubMed
Koradi R.; Billeter M.; Wuthrich K. (1996) MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55. PubMed
Doreleijers J. F.; da Silva A. W. S.; Krieger E.; Nabuurs S. B.; Spronk C. A. E. M.; Stevens T. J.; Vranken W. F.; Vriend G.; Vuister G. W. (2012) CING: An integrated residue-based structure validation program suite. J. Biomol. NMR 54, 267–283. PubMed PMC
Winter G. (2010) xia2: An expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190.
Bailey S. (1994) The Ccp4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760–763. PubMed
Emsley P.; Cowtan K. (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132. PubMed
Vagin A.; Teplyakov A. (1997) MOLREP: An automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025.
Smith G. D.; Pangborn W. A.; Blessing R. H. (2003) The structure of T-6 human insulin at 1.0 Å resolution. Acta Crystallogr. D59, 474–482. PubMed
Murshudov G. N.; Vagin A. A.; Dodson E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255. PubMed
Yao Z. P.; Zeng Z. H.; Li H. M.; Zhang Y.; Feng Y. M.; Wang D. C. (1999) Structure of an insulin dimer in an orthorhombic crystal: The structure analysis of a human insulin mutant (B9 Ser → Glu). Acta Crystallogr. D55, 1524–1532. PubMed
Nakagawa S. H.; Tager H. S. (1991) Implications of invariant residue LeuB6 in insulin-receptor interactions. J. Biol. Chem. 266, 11502–11509. PubMed
Sohma Y.; Hua Q. X.; Liu M.; Phillips N. B.; Hu S. Q.; Whittaker J.; Whittaker L. J.; Ng A.; Roberts C. T.; Arvan P.; Kent S. B. H.; Weiss M. A. (2010) Contribution of Residue B5 to the Folding and Function of Insulin and IGF-I. J. Biol. Chem. 285, 5040–5055. PubMed PMC
Hua Q. X.; Liu M.; Hu S. Q.; Jia W. H.; Arvan P.; Weiss M. A. (2006) A conserved histidine in insulin is required for the foldability of human proinsulin: Structure and function of an Ala(B5) analog. J. Biol. Chem. 281, 24889–24899. PubMed
Brange J.; Langkjaer L.; Havelund S.; Volund A. (1992) Chemical-Stability of Insulin. 1. Hydrolytic Degradation during Storage of Pharmaceutical Preparations. Pharmacol. Res. 9, 715–726. PubMed
Huus K.; Havelund S.; Olsen H. B.; de Weert M. V.; Frokjaer S. (2006) Chemical and thermal stability of insulin: Effects of zinc and ligand binding to the insulin zinc-hexamer. Pharmacol. Res. 23, 2611–2620. PubMed
Gauguin L.; Klaproth B.; Sajid W.; Andersen A. S.; McNeil K. A.; Forbes B. E.; De Meyts P. (2008) Structural basis for the lower affinity of the insulin-like growth factors for the insulin receptor. J. Biol. Chem. 283, 2604–2613. PubMed
Kristensen C.; Kjeldsen T.; Wiberg F. C.; Schaffer L.; Hach M.; Havelund S.; Bass J.; Steiner D. F.; Andersen A. S. (1997) Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272, 12978–12983. PubMed
Bajaj M.; Blundell T. L.; Horuk R.; Pitts J. E.; Wood S. P.; Gowan L. K.; Schwabe C.; Wollmer A.; Gliemann J.; Gammeltoft S. (1986) Coypu Insulin: Primary Structure, Conformation and Biological Properties of a Hystricomorph Rodent Insulin. Biochem. J. 238, 345–351. PubMed PMC
Conlon J. M. (2001) Evolution of the insulin molecule: Insights into structure-activity and phylogenetic relationships. Peptides 22, 1183–1193. PubMed
Marki F.; de Gasparo M.; Eisler K.; Kamber B.; Riniker B.; Rittel W.; Sieber P. (1979) Synthesis and biological activity of seventeen analogues of human insulin. Hoppe-Seyler’s Z. Physiol. Chem. 360, 1619–1632. PubMed
Cao Q. P.; Geiger R.; Langner D.; Geisen K. (1986) Biological-Activity In vivo of Insulin Analogs Modified in the N-Terminal Region of the B-Chain. Biol. Chem. Hoppe-Seyler 367, 135–140. PubMed
Liu M.; Haataja L.; Wright J.; Wickramasinghe N. P.; Hua Q. X.; Phillips N. F.; Barbetti F.; Weiss M. A.; Arvan P. (2010) Mutant INS-Gene Induced Diabetes of Youth: Proinsulin Cysteine Residues Impose Dominant-Negative Inhibition on Wild-Type Proinsulin Transport. PLoS One 5, e13333. PubMed PMC
Edghill E. L.; Flanagan S. E.; Patch A. M.; Boustred C.; Parrish A.; Shields B.; Shepherd M. H.; Hussain K.; Kapoor R. R.; Malecki M.; MacDonald M. J.; Stoy J.; Steiner D. F.; Philipson L. H.; Bell G. I.; Hattersley A. T.; Ellard S.; Collaborative N. D. I. (2008) Insulin mutation screening in 1,044 patients with diabetes: Mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 57, 1034–1042. PubMed PMC
Burke G. T.; Hu S. Q.; Ohta N.; Schwartz G. P.; Zong L.; Katsoyannis P. G. (1990) Superactive insulins. Biochem. Biophys. Res. Commun. 173, 982–987. PubMed
Tang L.; Whittingham J. L.; Verma C. S.; Caves L. S.; Dodson G. G. (1999) Structural consequences of the B5 histidine → tyrosine mutation in human insulin characterized by X-ray crystallography and conformational analysis. Biochemistry 38, 12041–12051. PubMed
Chen H.; Feng Y. M. (2001) Contribution of the residue Glu9, Glu46, and Phe49 to the biological activity of insulin-like growth factor-1. IUBMB Life 51, 33–37. PubMed
Nakagawa S. H., Zhao M., Hua Q. X., and Weiss M. A.. The importance of residue B8 in insulin activity, structure and folding. In Proceedings of the 15th American Peptide Symposium (Tam J. P., and Kaumaya P. T. P., Eds.) pp 471–472, Pierce Chemical Co., Rockford, IL.
Guo Z. Y.; Zhang Z.; Jia X. Y.; Tang Y. H.; Feng Y. M. (2005) Mutational analysis of the ahsolutely conserved B8Gly: Consequence on foldability and activity of insulin. Acta Biochim. Biophys. Sin. 37, 673–679. PubMed
Stoy J.; Steiner D. F.; Park S. Y.; Ye H. G.; Philipson L. H.; Bell G. I. (2010) Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev. Endocr. Metab. Disord. 11, 205–215. PubMed PMC
Stoy J.; Edghill E. L.; Flanagan S. E.; Ye H. G.; Paz V. P.; Pluzhnikov A.; Below J. E.; Hayes M. G.; Cox N. J.; Lipkind G. M.; Lipton R. B.; Greeley S. A. W.; Patch A. M.; Ellard S.; Steiner D. F.; Hattersley A. T.; Philipson L. H.; Bell G. I. (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. U.S.A. 104, 15040–15044. PubMed PMC
Markussen J.; Diers I.; Engesgaard A.; Hansen M. T.; Hougaard P.; Langkjaer L.; Norris K.; Ribel U.; Sorensen A. R.; Sorensen E. (1987) Soluble, prolonged-acting insulin derivatives. II. Degree of protraction and crystallizability of insulins substituted in positions A17, B8, B13, B27 and B30. Protein Eng. 1, 215–223. PubMed
Zhao M., Nakagawa S. H., Hua Q. X., and Weiss M. A. (1997) Exploring the foldability and function of insulin by combinatorial peptide chemistry. In Proceedings of the 15th American Peptide Symposium (Tam J. P., and Kaumaya P. T. P., Eds.) pp 369–371, Pierce Chemical Co., Rockford, IL.
Brange J. (1997) The new era of biotech insulin analogues. Diabetologia 40, S48–S53. PubMed
Bao S. J.; Xie D. L.; Zhang J. P.; Chang W. R.; Liang D. C. (1997) Crystal structure of desheptapeptide(B24-B30)insulin at 1.6 Å resolution: Implications for receptor binding. Proc. Natl. Acad. Sci. U.S.A. 94, 2975–2980. PubMed PMC
Olsen H. B.; Ludvigsen S.; Kaarsholm N. C. (1996) Solution structure of an engineered insulin monomer at neutral pH. Biochemistry 35, 8836–8845. PubMed
Characterization of insulin crystalline form in isolated β-cell secretory granules
Characterization of viral insulins reveals white adipose tissue-specific effects in mice
A radioligand binding assay for the insulin-like growth factor 2 receptor
Rational steering of insulin binding specificity by intra-chain chemical crosslinking