Characterization of viral insulins reveals white adipose tissue-specific effects in mice
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K01 DK117967
NIDDK NIH HHS - United States
MR/R009066/1
Medical Research Council - United Kingdom
P30 DK036836
NIDDK NIH HHS - United States
U24 DK093000
NIDDK NIH HHS - United States
R01 DK033201
NIDDK NIH HHS - United States
R01 DK031036
NIDDK NIH HHS - United States
U2C DK093000
NIDDK NIH HHS - United States
R37 DK031036
NIDDK NIH HHS - United States
PubMed
33220491
PubMed Central
PMC7770979
DOI
10.1016/j.molmet.2020.101121
PII: S2212-8778(20)30195-2
Knihovny.cz E-zdroje
- Klíčová slova
- Adipose tissue, GLUT4, Glucose metabolism, IGF-1, Insulin, VILPs, Viral insulin, Viral mimicry,
- MeSH
- bílá tuková tkáň metabolismus MeSH
- buněčné linie MeSH
- CD antigeny MeSH
- fosforylace MeSH
- glukosa metabolismus MeSH
- hnědá tuková tkáň metabolismus MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- inzulin genetika metabolismus MeSH
- inzuliny metabolismus MeSH
- Iridovirus genetika MeSH
- iridoviry genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptor IGF typ 1 genetika metabolismus MeSH
- receptor inzulinu metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CD antigeny MeSH
- glukosa MeSH
- IGF1 protein, human MeSH Prohlížeč
- IGF1R protein, human MeSH Prohlížeč
- Igf1r protein, mouse MeSH Prohlížeč
- INSR protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- inzulin MeSH
- inzuliny MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
OBJECTIVE: Members of the insulin/insulin-like growth factor (IGF) superfamily are well conserved across the evolutionary tree. We recently showed that four viruses in the Iridoviridae family possess genes that encode proteins highly homologous to human insulin/IGF-1. Using chemically synthesized single-chain (sc), i.e., IGF-1-like, forms of the viral insulin/IGF-1-like peptides (VILPs), we previously showed that they can stimulate human receptors. Because these peptides possess potential cleavage sites to form double chain (dc), i.e., more insulin-like, VILPs, in this study, we have characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1) for the first time. METHODS: The dcVILPs were chemically synthesized. Using murine fibroblast cell lines overexpressing insulin receptor (IR-A or IR-B) or IGF1R, we first determined the binding affinity of dcVILPs to the receptors and characterized post-receptor signaling. Further, we used C57BL/6J mice to study the effect of dcVILPs on lowering blood glucose. We designed a 3-h dcVILP in vivo infusion experiment to determine the glucose uptake in different tissues. RESULTS: GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A and IR-B) and to the IGF1R, and for the latter, show higher affinity than human insulin. These dcVILPs stimulate IR and IGF1R phosphorylation and post-receptor signaling in vitro and in vivo. Both GIV and SGIV dcVILPs stimulate glucose uptake in mice. In vivo infusion experiments revealed that while insulin (0.015 nmol/kg/min) and GIV dcVILP (0.75 nmol/kg/min) stimulated a comparable glucose uptake in heart and skeletal muscle and brown adipose tissue, GIV dcVILP stimulated 2-fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This was associated with increased Akt phosphorylation and glucose transporter type 4 (GLUT4) gene expression compared to insulin in WAT. CONCLUSIONS: Our results show that GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action, design new analogs that specifically target the tissues and provide new insights into their potential role in disease.
Boston College Biology Department Higgins Hall 140 Commonwealth Avenue Chestnut Hill MA 02467 USA
Zobrazit více v PubMed
De Meyts P. Insulin and its receptor: structure, function and evolution. BioEssays. 2004;26:1351–1362. PubMed
Fernandez R., Tabarini D., Azpiazu N., Frasch M., Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. The EMBO Journal. 1995;14:3373–3384. PubMed PMC
Nagasawa H., Kataoka H., Isogai A., Tamura S., Suzuki A., Ishizaki H. Amino-terminal amino Acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science. 1984;226:1344–1345. PubMed
Pierce S.B., Costa M., Wisotzkey R., Devadhar S., Homburger S.A., Buchman A.R. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes & Development. 2001;15:672–686. PubMed PMC
Chan S.J., Steiner D.F. Insulin through the ages: phylogeny of a growth promoting and metabolic regulatory hormone. American Zoologist. 2000;40:213–222.
Haeusler R.A., McGraw T.E., Accili D. Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology. 2018;19:31–44. PubMed PMC
Boucher J., Kleinridders A., Kahn C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology. 2014;6 PubMed PMC
Smýkal V., Pivarči M., Provazník J., Bazalová O., Jedlička P., Lukšan O. Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Molecular Biology and Evolution. 2020;37:1775–1789. PubMed PMC
Altindis E., Cai W., Sakaguchi M., Zhang F., GuoXiao W., Liu F. Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: a paradigm shift for host-microbe interactions. Proceedings of the National Academy of Sciences of the United States of America. 2018;115:2461–2466. PubMed PMC
Huang Q., Kahn C.R., Altindis E. Viral hormones: expanding dimensions in endocrinology. Endocrinology. 2019;160:2165–2179. PubMed PMC
Tsai C.T., Ting J.W., Wu M.H., Wu M.F., Guo I.C., Chang C.Y. Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology. 2005;79:2010–2023. PubMed PMC
Song W.J., Qin Q.W., Qiu J., Huang C.H., Wang F., Hew C.L. Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. Journal of Virology. 2004;78:12576–12590. PubMed PMC
Lopez-Bueno A., Mavian C., Labella A.M., Castro D., Borrego J.J., Alcami A. Concurrence of iridovirus, polyomavirus, and a unique member of a new group of fish papillomaviruses in lymphocystis disease-affected Gilthead sea bream. Journal of Virology. 2016;90:8768–8779. PubMed PMC
Tidona C.A., Darai G. The complete DNA sequence of lymphocystis disease virus. Virology. 1997;230:207–216. PubMed
Fu Z., Gilbert E.R., Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current Diabetes Reviews. 2013;9:25–53. PubMed PMC
Murphy L.J., Bell G.I., Friesen H.G. Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology. 1987;120:1279–1282. PubMed
McRory J.E., Sherwood N.M. Ancient divergence of insulin and insulin-like growth factor. DNA and Cell Biology. 1997;16:939–949. PubMed
Conlon J.M. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships. Peptides. 2001;22:1183–1193. PubMed
Smith G.D., Pangborn W.A., Blessing R.H. The structure of T6 human insulin at 1.0 A resolution. Acta Crystallographica Section D Biological Crystallography. 2003;59:474–482. PubMed
Vajdos F.F., Ultsch M., Schaffer M.L., Deshayes K.D., Liu J., Skelton N.J. Crystal structure of human insulin-like growth factor-1: detergent binding inhibits binding protein interactions. Biochemistry. 2001;40:11022–11029. PubMed
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 2018;46:W296–W303. PubMed PMC
Liu F., Luo E.Y., Flora D.B., Mezo A.R. A synthetic route to human insulin using isoacyl peptides. Angewandte Chemie International Edition in English. 2014;53:3983–3987. PubMed
Křížková K., Chrudinová M., Povalová A., Selicharová I., Collinsová M., Vaněk V. Insulin-Insulin-like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry. 2016;55:2903–2913. PubMed
Morcavallo A., Genua M., Palummo A., Kletvikova E., Jiracek J., Brzozowski A.M. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. Journal of Biological Chemistry. 2012;287:11422–11436. PubMed PMC
Kosinová L., Veverka V., Novotná P., Collinsová M., Urbanová M., Moody N.R. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry. 2014;53:3392–3402. PubMed PMC
Cai W., Sakaguchi M., Kleinridders A., Gonzalez-Del Pino G., Dreyfuss J.M., O'Neill B.T. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nature Communications. 2017;8:14892. PubMed PMC
Kim J.K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods in Molecular Biology. 2009;560:221–238. PubMed
Menting J.G., Yang Y., Chan S.J., Phillips N.B., Smith B.J., Whittaker J. Protective hinge in insulin opens to enable its receptor engagement. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:E3395–E3404. PubMed PMC
Menting J.G., Whittaker J., Margetts M.B., Whittaker L.J., Kong G.K., Smith B.J. How insulin engages its primary binding site on the insulin receptor. Nature. 2013;493:241–245. PubMed PMC
Xu Y., Kong G.K., Menting J.G., Margetts M.B., Delaine C.A., Jenkin L.M. How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications. 2018;9:821. PubMed PMC
Uchikawa E., Choi E., Shang G., Yu H., Bai X.C. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife. 2019;8 PubMed PMC
Gutmann T., Schäfer I.B., Poojari C., Brankatschk B., Vattulainen I., Strauss M. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. The Journal of Cell Biology. 2020:219. PubMed PMC
Li J., Choi E., Yu H., Bai X.C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications. 2019;10:4567. PubMed PMC
De Meyts P. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. BioEssays. 2015;37:389–397. PubMed
Macháčková K., Mlčochová K., Potalitsyn P., Hanková K., Socha O., Buděšínský M. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. Journal of Biological Chemistry. 2019;294:17371–17382. PubMed PMC
Gauguin L., Delaine C., Alvino C.L., McNeil K.A., Wallace J.C., Forbes B.E. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. Journal of Biological Chemistry. 2008;283:20821–20829. PubMed PMC
Seino S., Bell G.I. Alternative splicing of human insulin receptor messenger RNA. Biochemical and Biophysical Research Communications. 1989;159:312–316. PubMed
Peavy D.E., Brunner M.R., Duckworth W.C., Hooker C.S., Frank B.H. Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats. Journal of Biological Chemistry. 1985;260:13989–13994. PubMed
Sell C., Dumenil G., Deveaud C., Miura M., Coppola D., DeAngelis T. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Molecular and Cellular Biology. 1994;14:3604–3612. PubMed PMC
Frasca F., Pandini G., Scalia P., Sciacca L., Mineo R., Costantino A. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Molecular and Cellular Biology. 1999;19:3278–3288. PubMed PMC
Miura M., Surmacz E., Burgaud J.L., Baserga R. Different effects on mitogenesis and transformation of a mutation at tyrosine 1251 of the insulin-like growth factor I receptor. Journal of Biological Chemistry. 1995;270:22639–22644. PubMed
Jiráček J., Žáková L. Structural perspectives of insulin receptor isoform-selective insulin analogs. Frontiers in Endocrinology. 2017;8 PubMed PMC
Taniguchi C.M., Emanuelli B., Kahn C.R. Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology. 2006;7:85–96. PubMed
Annunziata M., Granata R., Ghigo E. The IGF system. Acta Diabetologica. 2011;48:1–9. PubMed
Nakano K., Yanobu-Takanashi R., Takahashi Y., Sasaki H., Shimizu Y., Okamura T. Novel murine model of congenital diabetes: the insulin hyposecretion mouse. Journal of Diabetes Investigation. 2019;10:227–237. PubMed PMC
Macotela Y., Boucher J., Tran T.T., Kahn C.R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58:803–812. PubMed PMC
Batista T.M., Garcia-Martin R., Cai W., Konishi M., O'Neill B.T., Sakaguchi M. Multi-dimensional transcriptional remodeling by physiological insulin in vivo. Cell Reports. 2019;26:3429–34243 e3. PubMed PMC
Karim S., Adams D.H., Lalor P.F. Hepatic expression and cellular distribution of the glucose transporter family. World Journal of Gastroenterology. 2012;18:6771–6781. PubMed PMC
Bayne M.L., Applebaum J., Underwood D., Chicchi G.G., Green B.G., Hayes N.S. The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. Journal of Biological Chemistry. 1989;264:11004–11008. PubMed
Gill R., Wallach B., Verma C., Ursø B., De Wolf E., Grötzinger J. Engineering the C-region of human insulin-like growth factor-1: implications for receptor binding. Protein Engineering. 1996;9:1011–1019. PubMed
Bayne M.L., Applebaum J., Chicchi G.G., Miller R.E., Cascieri M.A. The roles of tyrosines 24, 31, and 60 in the high affinity binding of insulin-like growth factor-I to the type 1 insulin-like growth factor receptor. Journal of Biological Chemistry. 1990;265:15648–15652. PubMed
Macháčková K., Collinsová M., Chrudinová M., Selicharová I., Pícha J., Buděšínský M. Insulin-like growth factor 1 analogs clicked in the C domain: chemical synthesis and biological activities. Journal of Medicinal Chemistry. 2017;60:10105–10117. PubMed
Kurtzhals P., Schaffer L., Sorensen A., Kristensen C., Jonassen I., Schmid C. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000;49:999–1005. PubMed
Schwartz G.P., Burke G.T., Katsoyannis P.G. A superactive insulin: [B10-aspartic acid]insulin(human) Proceedings of the National Academy of Sciences of the United States of America. 1987;84:6408–6411. PubMed PMC
Slieker L.J., Brooke G.S., DiMarchi R.D., Flora D.B., Green L.K., Hoffmann J.A. Modifications in the B10 and B26-30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia. 1997;40(Suppl 2):S54–S61. PubMed
James D.E., Brown R., Navarro J., Pilch P.F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature. 1988;333:183–185. PubMed
Klip A., McGraw T.E., James D.E. Thirty sweet years of GLUT4. Journal of Biological Chemistry. 2019;294:11369–11381. PubMed PMC
Brewer P.D., Habtemichael E.N., Romenskaia I., Mastick C.C., Coster A.C. Insulin-regulated Glut4 translocation: membrane protein trafficking with six distinctive steps. Journal of Biological Chemistry. 2014;289:17280–17298. PubMed PMC
Huang S., Czech M.P. The GLUT4 glucose transporter. Cell Metabolism. 2007;5:237–252. PubMed
Tozzo E., Shepherd P.R., Gnudi L., Kahn B.B. Transgenic GLUT-4 overexpression in fat enhances glucose metabolism: preferential effect on fatty acid synthesis. American Journal of Physiology. 1995;268:E956–E964. PubMed
Shepherd P.R., Gnudi L., Tozzo E., Yang H., Leach F., Kahn B.B. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. Journal of Biological Chemistry. 1993;268:22243–22246. PubMed
Sinha V.P., Choi S.L., Soon D.K., Mace K.F., Yeo K.P., Lim S.T. Single-dose pharmacokinetics and glucodynamics of the novel, long-acting basal insulin LY2605541 in healthy subjects. The Journal of Clinical Pharmacology. 2014;54:792–799. PubMed
Wang Y., Shao J., Zaro J.L., Shen W.C. Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production. Diabetes. 2014;63:1779–1788. PubMed PMC
Glauber H.S., Revers R.R., Henry R., Schmeiser L., Wallace P., Kolterman O.G. In vivo deactivation of proinsulin action on glucose disposal and hepatic glucose production in normal man. Diabetes. 1986;35:311–317. PubMed
Smeeton F., Shojaee Moradie F., Jones R.H., Westergaard L., Haahr H., Umpleby A.M. Differential effects of insulin detemir and neutral protamine Hagedorn (NPH) insulin on hepatic glucose production and peripheral glucose uptake during hypoglycaemia in type 1 diabetes. Diabetologia. 2009;52:2317–2323. PubMed
Henry R.R., Mudaliar S., Ciaraldi T.P., Armstrong D.A., Burke P., Pettus J. Basal insulin peglispro demonstrates preferential hepatic versus peripheral action relative to insulin glargine in healthy subjects. Diabetes Care. 2014;37:2609–2615. PubMed
Shojaee-Moradie F., Powrie J.K., Sundermann E., Spring M.W., Schuttler A., Sonksen P.H. Novel hepatoselective insulin analog: studies with a covalently linked thyroxyl-insulin complex in humans. Diabetes Care. 2000;23:1124–1129. PubMed
Zaykov A.N., Mayer J.P., DiMarchi R.D. Pursuit of a perfect insulin. Nature Reviews Drug Discovery. 2016;15:425–439. PubMed
Göke R., Fehmann H.C., Linn T., Schmidt H., Krause M., Eng J. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. Journal of Biological Chemistry. 1993;268:19650–19655. PubMed
Thorens B., Porret A., Bühler L., Deng S.P., Morel P., Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes. 1993;42:1678–1682. PubMed
Ahorukomeye P., Disotuar M.M., Gajewiak J., Karanth S., Watkins M., Robinson S.D. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. Elife. 2019;8 PubMed PMC
Robinson S.D., Safavi-Hemami H. Insulin as a weapon. Toxicon. 2016;123:56–61. PubMed
Menting J.G., Gajewiak J., MacRaild C.A., Chou D.H., Disotuar M.M., Smith N.A. A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nature Structural & Molecular Biology. 2016;23:916–920. PubMed
Anthony S.J., Epstein J.H., Murray K.A., Navarrete-Macias I., Zambrana-Torrelio C.M., Solovyov A. A strategy to estimate unknown viral diversity in mammals. mBio. 2013;4:e00598–e00613. PubMed PMC
Sanchez E.L., Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;479–480:609–618. PubMed PMC
Thai M., Graham N.A., Braas D., Nehil M., Komisopoulou E., Kurdistani S.K. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metabolism. 2014;19:694–701. PubMed PMC
Abrantes J.L., Alves C.M., Costa J., Almeida F.C., Sola-Penna M., Fontes C.F. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1) Biochimica et Biophysica Acta. 2012;1822:1198–1206. PubMed
Jordan T.X., Randall G. Flavivirus modulation of cellular metabolism. Current Opinion of Virology. 2016;19:7–10. PubMed PMC
Kooijman R. Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine & Growth Factor Reviews. 2006;17:305–323. PubMed
Yan Y., Cui H., Guo C., Li J., Huang X., Wei J. An insulin-like growth factor homologue of Singapore grouper iridovirus modulates cell proliferation, apoptosis and enhances viral replication. Journal of General Virology. 2013;94:2759–2770. PubMed