Characterization of viral insulins reveals white adipose tissue-specific effects in mice

. 2021 Feb ; 44 () : 101121. [epub] 20201119

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33220491

Grantová podpora
K01 DK117967 NIDDK NIH HHS - United States
MR/R009066/1 Medical Research Council - United Kingdom
P30 DK036836 NIDDK NIH HHS - United States
U24 DK093000 NIDDK NIH HHS - United States
R01 DK033201 NIDDK NIH HHS - United States
R01 DK031036 NIDDK NIH HHS - United States
U2C DK093000 NIDDK NIH HHS - United States
R37 DK031036 NIDDK NIH HHS - United States

Odkazy

PubMed 33220491
PubMed Central PMC7770979
DOI 10.1016/j.molmet.2020.101121
PII: S2212-8778(20)30195-2
Knihovny.cz E-zdroje

OBJECTIVE: Members of the insulin/insulin-like growth factor (IGF) superfamily are well conserved across the evolutionary tree. We recently showed that four viruses in the Iridoviridae family possess genes that encode proteins highly homologous to human insulin/IGF-1. Using chemically synthesized single-chain (sc), i.e., IGF-1-like, forms of the viral insulin/IGF-1-like peptides (VILPs), we previously showed that they can stimulate human receptors. Because these peptides possess potential cleavage sites to form double chain (dc), i.e., more insulin-like, VILPs, in this study, we have characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1) for the first time. METHODS: The dcVILPs were chemically synthesized. Using murine fibroblast cell lines overexpressing insulin receptor (IR-A or IR-B) or IGF1R, we first determined the binding affinity of dcVILPs to the receptors and characterized post-receptor signaling. Further, we used C57BL/6J mice to study the effect of dcVILPs on lowering blood glucose. We designed a 3-h dcVILP in vivo infusion experiment to determine the glucose uptake in different tissues. RESULTS: GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A and IR-B) and to the IGF1R, and for the latter, show higher affinity than human insulin. These dcVILPs stimulate IR and IGF1R phosphorylation and post-receptor signaling in vitro and in vivo. Both GIV and SGIV dcVILPs stimulate glucose uptake in mice. In vivo infusion experiments revealed that while insulin (0.015 nmol/kg/min) and GIV dcVILP (0.75 nmol/kg/min) stimulated a comparable glucose uptake in heart and skeletal muscle and brown adipose tissue, GIV dcVILP stimulated 2-fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This was associated with increased Akt phosphorylation and glucose transporter type 4 (GLUT4) gene expression compared to insulin in WAT. CONCLUSIONS: Our results show that GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action, design new analogs that specifically target the tissues and provide new insights into their potential role in disease.

Zobrazit více v PubMed

De Meyts P. Insulin and its receptor: structure, function and evolution. BioEssays. 2004;26:1351–1362. PubMed

Fernandez R., Tabarini D., Azpiazu N., Frasch M., Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. The EMBO Journal. 1995;14:3373–3384. PubMed PMC

Nagasawa H., Kataoka H., Isogai A., Tamura S., Suzuki A., Ishizaki H. Amino-terminal amino Acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science. 1984;226:1344–1345. PubMed

Pierce S.B., Costa M., Wisotzkey R., Devadhar S., Homburger S.A., Buchman A.R. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes & Development. 2001;15:672–686. PubMed PMC

Chan S.J., Steiner D.F. Insulin through the ages: phylogeny of a growth promoting and metabolic regulatory hormone. American Zoologist. 2000;40:213–222.

Haeusler R.A., McGraw T.E., Accili D. Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology. 2018;19:31–44. PubMed PMC

Boucher J., Kleinridders A., Kahn C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology. 2014;6 PubMed PMC

Smýkal V., Pivarči M., Provazník J., Bazalová O., Jedlička P., Lukšan O. Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Molecular Biology and Evolution. 2020;37:1775–1789. PubMed PMC

Altindis E., Cai W., Sakaguchi M., Zhang F., GuoXiao W., Liu F. Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: a paradigm shift for host-microbe interactions. Proceedings of the National Academy of Sciences of the United States of America. 2018;115:2461–2466. PubMed PMC

Huang Q., Kahn C.R., Altindis E. Viral hormones: expanding dimensions in endocrinology. Endocrinology. 2019;160:2165–2179. PubMed PMC

Tsai C.T., Ting J.W., Wu M.H., Wu M.F., Guo I.C., Chang C.Y. Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology. 2005;79:2010–2023. PubMed PMC

Song W.J., Qin Q.W., Qiu J., Huang C.H., Wang F., Hew C.L. Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. Journal of Virology. 2004;78:12576–12590. PubMed PMC

Lopez-Bueno A., Mavian C., Labella A.M., Castro D., Borrego J.J., Alcami A. Concurrence of iridovirus, polyomavirus, and a unique member of a new group of fish papillomaviruses in lymphocystis disease-affected Gilthead sea bream. Journal of Virology. 2016;90:8768–8779. PubMed PMC

Tidona C.A., Darai G. The complete DNA sequence of lymphocystis disease virus. Virology. 1997;230:207–216. PubMed

Fu Z., Gilbert E.R., Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current Diabetes Reviews. 2013;9:25–53. PubMed PMC

Murphy L.J., Bell G.I., Friesen H.G. Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology. 1987;120:1279–1282. PubMed

McRory J.E., Sherwood N.M. Ancient divergence of insulin and insulin-like growth factor. DNA and Cell Biology. 1997;16:939–949. PubMed

Conlon J.M. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships. Peptides. 2001;22:1183–1193. PubMed

Smith G.D., Pangborn W.A., Blessing R.H. The structure of T6 human insulin at 1.0 A resolution. Acta Crystallographica Section D Biological Crystallography. 2003;59:474–482. PubMed

Vajdos F.F., Ultsch M., Schaffer M.L., Deshayes K.D., Liu J., Skelton N.J. Crystal structure of human insulin-like growth factor-1: detergent binding inhibits binding protein interactions. Biochemistry. 2001;40:11022–11029. PubMed

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 2018;46:W296–W303. PubMed PMC

Liu F., Luo E.Y., Flora D.B., Mezo A.R. A synthetic route to human insulin using isoacyl peptides. Angewandte Chemie International Edition in English. 2014;53:3983–3987. PubMed

Křížková K., Chrudinová M., Povalová A., Selicharová I., Collinsová M., Vaněk V. Insulin-Insulin-like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry. 2016;55:2903–2913. PubMed

Morcavallo A., Genua M., Palummo A., Kletvikova E., Jiracek J., Brzozowski A.M. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. Journal of Biological Chemistry. 2012;287:11422–11436. PubMed PMC

Kosinová L., Veverka V., Novotná P., Collinsová M., Urbanová M., Moody N.R. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry. 2014;53:3392–3402. PubMed PMC

Cai W., Sakaguchi M., Kleinridders A., Gonzalez-Del Pino G., Dreyfuss J.M., O'Neill B.T. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nature Communications. 2017;8:14892. PubMed PMC

Kim J.K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods in Molecular Biology. 2009;560:221–238. PubMed

Menting J.G., Yang Y., Chan S.J., Phillips N.B., Smith B.J., Whittaker J. Protective hinge in insulin opens to enable its receptor engagement. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:E3395–E3404. PubMed PMC

Menting J.G., Whittaker J., Margetts M.B., Whittaker L.J., Kong G.K., Smith B.J. How insulin engages its primary binding site on the insulin receptor. Nature. 2013;493:241–245. PubMed PMC

Xu Y., Kong G.K., Menting J.G., Margetts M.B., Delaine C.A., Jenkin L.M. How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications. 2018;9:821. PubMed PMC

Uchikawa E., Choi E., Shang G., Yu H., Bai X.C. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife. 2019;8 PubMed PMC

Gutmann T., Schäfer I.B., Poojari C., Brankatschk B., Vattulainen I., Strauss M. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. The Journal of Cell Biology. 2020:219. PubMed PMC

Li J., Choi E., Yu H., Bai X.C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications. 2019;10:4567. PubMed PMC

De Meyts P. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. BioEssays. 2015;37:389–397. PubMed

Macháčková K., Mlčochová K., Potalitsyn P., Hanková K., Socha O., Buděšínský M. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. Journal of Biological Chemistry. 2019;294:17371–17382. PubMed PMC

Gauguin L., Delaine C., Alvino C.L., McNeil K.A., Wallace J.C., Forbes B.E. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. Journal of Biological Chemistry. 2008;283:20821–20829. PubMed PMC

Seino S., Bell G.I. Alternative splicing of human insulin receptor messenger RNA. Biochemical and Biophysical Research Communications. 1989;159:312–316. PubMed

Peavy D.E., Brunner M.R., Duckworth W.C., Hooker C.S., Frank B.H. Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats. Journal of Biological Chemistry. 1985;260:13989–13994. PubMed

Sell C., Dumenil G., Deveaud C., Miura M., Coppola D., DeAngelis T. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Molecular and Cellular Biology. 1994;14:3604–3612. PubMed PMC

Frasca F., Pandini G., Scalia P., Sciacca L., Mineo R., Costantino A. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Molecular and Cellular Biology. 1999;19:3278–3288. PubMed PMC

Miura M., Surmacz E., Burgaud J.L., Baserga R. Different effects on mitogenesis and transformation of a mutation at tyrosine 1251 of the insulin-like growth factor I receptor. Journal of Biological Chemistry. 1995;270:22639–22644. PubMed

Jiráček J., Žáková L. Structural perspectives of insulin receptor isoform-selective insulin analogs. Frontiers in Endocrinology. 2017;8 PubMed PMC

Taniguchi C.M., Emanuelli B., Kahn C.R. Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology. 2006;7:85–96. PubMed

Annunziata M., Granata R., Ghigo E. The IGF system. Acta Diabetologica. 2011;48:1–9. PubMed

Nakano K., Yanobu-Takanashi R., Takahashi Y., Sasaki H., Shimizu Y., Okamura T. Novel murine model of congenital diabetes: the insulin hyposecretion mouse. Journal of Diabetes Investigation. 2019;10:227–237. PubMed PMC

Macotela Y., Boucher J., Tran T.T., Kahn C.R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58:803–812. PubMed PMC

Batista T.M., Garcia-Martin R., Cai W., Konishi M., O'Neill B.T., Sakaguchi M. Multi-dimensional transcriptional remodeling by physiological insulin in vivo. Cell Reports. 2019;26:3429–34243 e3. PubMed PMC

Karim S., Adams D.H., Lalor P.F. Hepatic expression and cellular distribution of the glucose transporter family. World Journal of Gastroenterology. 2012;18:6771–6781. PubMed PMC

Bayne M.L., Applebaum J., Underwood D., Chicchi G.G., Green B.G., Hayes N.S. The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. Journal of Biological Chemistry. 1989;264:11004–11008. PubMed

Gill R., Wallach B., Verma C., Ursø B., De Wolf E., Grötzinger J. Engineering the C-region of human insulin-like growth factor-1: implications for receptor binding. Protein Engineering. 1996;9:1011–1019. PubMed

Bayne M.L., Applebaum J., Chicchi G.G., Miller R.E., Cascieri M.A. The roles of tyrosines 24, 31, and 60 in the high affinity binding of insulin-like growth factor-I to the type 1 insulin-like growth factor receptor. Journal of Biological Chemistry. 1990;265:15648–15652. PubMed

Macháčková K., Collinsová M., Chrudinová M., Selicharová I., Pícha J., Buděšínský M. Insulin-like growth factor 1 analogs clicked in the C domain: chemical synthesis and biological activities. Journal of Medicinal Chemistry. 2017;60:10105–10117. PubMed

Kurtzhals P., Schaffer L., Sorensen A., Kristensen C., Jonassen I., Schmid C. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000;49:999–1005. PubMed

Schwartz G.P., Burke G.T., Katsoyannis P.G. A superactive insulin: [B10-aspartic acid]insulin(human) Proceedings of the National Academy of Sciences of the United States of America. 1987;84:6408–6411. PubMed PMC

Slieker L.J., Brooke G.S., DiMarchi R.D., Flora D.B., Green L.K., Hoffmann J.A. Modifications in the B10 and B26-30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia. 1997;40(Suppl 2):S54–S61. PubMed

James D.E., Brown R., Navarro J., Pilch P.F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature. 1988;333:183–185. PubMed

Klip A., McGraw T.E., James D.E. Thirty sweet years of GLUT4. Journal of Biological Chemistry. 2019;294:11369–11381. PubMed PMC

Brewer P.D., Habtemichael E.N., Romenskaia I., Mastick C.C., Coster A.C. Insulin-regulated Glut4 translocation: membrane protein trafficking with six distinctive steps. Journal of Biological Chemistry. 2014;289:17280–17298. PubMed PMC

Huang S., Czech M.P. The GLUT4 glucose transporter. Cell Metabolism. 2007;5:237–252. PubMed

Tozzo E., Shepherd P.R., Gnudi L., Kahn B.B. Transgenic GLUT-4 overexpression in fat enhances glucose metabolism: preferential effect on fatty acid synthesis. American Journal of Physiology. 1995;268:E956–E964. PubMed

Shepherd P.R., Gnudi L., Tozzo E., Yang H., Leach F., Kahn B.B. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. Journal of Biological Chemistry. 1993;268:22243–22246. PubMed

Sinha V.P., Choi S.L., Soon D.K., Mace K.F., Yeo K.P., Lim S.T. Single-dose pharmacokinetics and glucodynamics of the novel, long-acting basal insulin LY2605541 in healthy subjects. The Journal of Clinical Pharmacology. 2014;54:792–799. PubMed

Wang Y., Shao J., Zaro J.L., Shen W.C. Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production. Diabetes. 2014;63:1779–1788. PubMed PMC

Glauber H.S., Revers R.R., Henry R., Schmeiser L., Wallace P., Kolterman O.G. In vivo deactivation of proinsulin action on glucose disposal and hepatic glucose production in normal man. Diabetes. 1986;35:311–317. PubMed

Smeeton F., Shojaee Moradie F., Jones R.H., Westergaard L., Haahr H., Umpleby A.M. Differential effects of insulin detemir and neutral protamine Hagedorn (NPH) insulin on hepatic glucose production and peripheral glucose uptake during hypoglycaemia in type 1 diabetes. Diabetologia. 2009;52:2317–2323. PubMed

Henry R.R., Mudaliar S., Ciaraldi T.P., Armstrong D.A., Burke P., Pettus J. Basal insulin peglispro demonstrates preferential hepatic versus peripheral action relative to insulin glargine in healthy subjects. Diabetes Care. 2014;37:2609–2615. PubMed

Shojaee-Moradie F., Powrie J.K., Sundermann E., Spring M.W., Schuttler A., Sonksen P.H. Novel hepatoselective insulin analog: studies with a covalently linked thyroxyl-insulin complex in humans. Diabetes Care. 2000;23:1124–1129. PubMed

Zaykov A.N., Mayer J.P., DiMarchi R.D. Pursuit of a perfect insulin. Nature Reviews Drug Discovery. 2016;15:425–439. PubMed

Göke R., Fehmann H.C., Linn T., Schmidt H., Krause M., Eng J. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. Journal of Biological Chemistry. 1993;268:19650–19655. PubMed

Thorens B., Porret A., Bühler L., Deng S.P., Morel P., Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes. 1993;42:1678–1682. PubMed

Ahorukomeye P., Disotuar M.M., Gajewiak J., Karanth S., Watkins M., Robinson S.D. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. Elife. 2019;8 PubMed PMC

Robinson S.D., Safavi-Hemami H. Insulin as a weapon. Toxicon. 2016;123:56–61. PubMed

Menting J.G., Gajewiak J., MacRaild C.A., Chou D.H., Disotuar M.M., Smith N.A. A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nature Structural & Molecular Biology. 2016;23:916–920. PubMed

Anthony S.J., Epstein J.H., Murray K.A., Navarrete-Macias I., Zambrana-Torrelio C.M., Solovyov A. A strategy to estimate unknown viral diversity in mammals. mBio. 2013;4:e00598–e00613. PubMed PMC

Sanchez E.L., Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;479–480:609–618. PubMed PMC

Thai M., Graham N.A., Braas D., Nehil M., Komisopoulou E., Kurdistani S.K. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metabolism. 2014;19:694–701. PubMed PMC

Abrantes J.L., Alves C.M., Costa J., Almeida F.C., Sola-Penna M., Fontes C.F. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1) Biochimica et Biophysica Acta. 2012;1822:1198–1206. PubMed

Jordan T.X., Randall G. Flavivirus modulation of cellular metabolism. Current Opinion of Virology. 2016;19:7–10. PubMed PMC

Kooijman R. Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine & Growth Factor Reviews. 2006;17:305–323. PubMed

Yan Y., Cui H., Guo C., Li J., Huang X., Wei J. An insulin-like growth factor homologue of Singapore grouper iridovirus modulates cell proliferation, apoptosis and enhances viral replication. Journal of General Virology. 2013;94:2759–2770. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression

. 2024 Feb ; 80 () : 101863. [epub] 20240103

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace