A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK132674
NIDDK NIH HHS - United States
PubMed
38182007
PubMed Central
PMC10831276
DOI
10.1016/j.molmet.2023.101863
PII: S2212-8778(23)00197-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biased signaling, IGF-1, IGF1 receptor, IGF1 receptor inhibition, Insulin, Iridoviridae, Viral insulin/IGF-1 like peptides (VILPs),
- MeSH
- elektronová kryomikroskopie MeSH
- exprese genu MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- fosforylace MeSH
- insulinu podobný růstový faktor I * genetika metabolismus MeSH
- inzulin metabolismus MeSH
- lidé MeSH
- myši MeSH
- protein - isoformy metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- receptor IGF typ 1 * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositol-3-kinasy MeSH
- IGF1R protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I * MeSH
- inzulin MeSH
- protein - isoformy MeSH
- protoonkogenní proteiny c-akt MeSH
- receptor IGF typ 1 * MeSH
OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
Boston College Biology Department Chestnut Hill MA USA
Department of Chemistry Indiana University Bloomington IN USA
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Novo Nordisk Indianapolis IN USA
Ramaciotti Centre for Cryo Electron Microscopy Monash University Clayton VIC Australia
Zobrazit více v PubMed
Annunziata M., Granata R., Ghigo E. The IGF system. Acta Diabetol. 2011;48(1):1–9. PubMed
Denley A., Cosgrove L.J., Booker G.W., Wallace J.C., Forbes B.E. Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 2005;16(4–5):421–439. PubMed
Tennagels N., Werner U. The metabolic and mitogenic properties of basal insulin analogues. Arch Physiol Biochem. 2013;119(1):1–14. PubMed PMC
Jiracek J., Zakova L. Structural perspectives of insulin receptor isoform-selective insulin analogs. Front Endocrinol. 2017;8:167. PubMed PMC
Mayer J.P., Zhang F., DiMarchi R.D. Insulin structure and function. Biopolymers. 2007;88(5):687–713. PubMed
Rinderknecht E., Humbel R.E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253(8):2769–2776. PubMed
Daughaday W.H., Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10(1):68–91. PubMed
Chan S.J., Cao Q.P., Steiner D.F. Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus. Proc Natl Acad Sci U S A. 1990;87(23):9319–9323. PubMed PMC
Graf R., Neuenschwander S., Brown M.R., Ackermann U. Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of bloodfed Aedes aegypti. Insect Mol Biol. 1997;6(2):151–163. PubMed
Sang M., Li C., Wu W., Li B. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction. Gene. 2016;585(2):196–204. PubMed
Altindis E., Cai W., Sakaguchi M., Zhang F., GuoXiao W., Liu F., et al. Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: a paradigm shift for host-microbe interactions. Proc Natl Acad Sci U S A. 2018;115(10):2461–2466. PubMed PMC
Chrudinova M., Moreau F., Noh H.L., Panikova T., Zakova L., Friedline R.H., et al. Characterization of viral insulins reveals white adipose tissue-specific effects in mice. Mol Metabol. 2021;44 PubMed PMC
Zhang F., Altindis E., Kahn C.R., DiMarchi R.D., Gelfanov V. A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Mol Metabol. 2021;53 PubMed PMC
Moreau F., Kirk N.S., Zhang F., Gelfanov V., List E.O., Chrudinova M., et al. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat Commun. 2022;13(1):6700. PubMed PMC
Girdhar K., Powis A., Raisingani A., Chrudinova M., Huang R., Tran T., et al. Viruses and metabolism: the effects of viral infections and viral insulins on host metabolism. Annu Rev Virol. 2021;8(1):373–391. PubMed PMC
Huang Q., Kahn C.R., Altindis E. Viral hormones: expanding dimensions in endocrinology. Endocrinology. 2019;160(9):2165–2179. PubMed PMC
Yang J., Zhang Y. Protein structure and function prediction using I-tasser. Curr Protoc Bioinformatics. 2015;52:5 8 1–15. PubMed PMC
Teufel F., Almagro Armenteros J.J., Johansen A.R., Gislason M.H., Pihl S.I., Tsirigos K.D., et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40(7):1023–1025. PubMed PMC
Kosinova L., Veverka V., Novotna P., Collinsova M., Urbanova M., Moody N.R., et al. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry. 2014;53(21):3392–3402. PubMed PMC
Liu F., Luo E.Y., Flora D.B., Mezo A.R. A synthetic route to human insulin using isoacyl peptides. Angew Chem Int Ed Engl. 2014;53(15):3983–3987. PubMed
Sell C., Dumenil G., Deveaud C., Miura M., Coppola D., DeAngelis T., et al. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol. 1994;14(6):3604–3612. PubMed PMC
Frasca F., Pandini G., Scalia P., Sciacca L., Mineo R., Costantino A., et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19(5):3278–3288. PubMed PMC
Krizkova K., Chrudinova M., Povalova A., Selicharova I., Collinsova M., Vanek V., et al. Insulin-Insulin-like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry. 2016;55(21):2903–2913. PubMed
Morcavallo A., Genua M., Palummo A., Kletvikova E., Jiracek J., Brzozowski A.M., et al. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J Biol Chem. 2012;287(14):11422–11436. PubMed PMC
Asai S., Zakova L., Selicharova I., Marek A., Jiracek J. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal Bioanal Chem. 2021;413(17):4531–4543. PubMed
Kertisova A., Zakova L., Machackova K., Marek A., Sacha P., Pompach P., et al. Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation. Open Biol. 2023;13(11) PubMed PMC
O'Shea E.K., Klemm J.D., Kim P.S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991;254(5031):539–544. PubMed
Xu Y., Kirk N.S., Venugopal H., Margetts M.B., Croll T.I., Sandow J.J., et al. How IGF-II binds to the human type 1 insulin-like growth factor receptor. Structure. 2020;28(7):786–798. e786. PubMed PMC
Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14(3):290–296. PubMed
Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol. 2019;2:218. PubMed PMC
Punjani A., Fleet D.J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat Methods. 2023;20(6):860–870. PubMed PMC
Sanchez-Garcia R., Gomez-Blanco J., Cuervo A., Carazo J.M., Sorzano C.O.S., Vargas J. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol. 2021;4(1):874. PubMed PMC
Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27(1):14–25. PubMed PMC
Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132. PubMed
Afonine P.V., Poon B.K., Read R.J., Sobolev O.V., Terwilliger T.C., Urzhumtsev A., et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol. 2018;74(Pt 6):531–544. PubMed PMC
Croll T.I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol. 2018;74(Pt 6):519–530. PubMed PMC
Li J., Choi E., Yu H., Bai X.C. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat Commun. 2019;10(1):4567. PubMed PMC
Xu Y., Kong G.K., Menting J.G., Margetts M.B., Delaine C.A., Jenkin L.M., et al. How ligand binds to the type 1 insulin-like growth factor receptor. Nat Commun. 2018;9(1):821. PubMed PMC
Moreau F., Kirk N.S., Zhang F., Gelfanov V., List E.O., Chrudinova M., et al. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat Commun. 2022;13(1):6700. PubMed PMC
Irwin D.M. Evolution of the mammalian insulin (Ins) gene; Changes in proteolytic processing. Peptides. 2021;135 PubMed
Dunn E.F., Connor J.H. HijAkt: the PI3K/Akt pathway in virus replication and pathogenesis. Prog Mol Biol Transl Sci. 2012;106:223–250. PubMed PMC
Ji W.T., Liu H.J. PI3K-Akt signaling and viral infection. Recent Pat Biotechnol. 2008;2(3):218–226. PubMed
Wei X., Zhang Y., Li C., Ai K., Li K., Li H., et al. The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc-mediated glycolysis. J Biol Chem. 2020;295(10):3000–3016. PubMed PMC
Farese R.V., Sajan M.P., Standaert M.L. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med. 2005;230(9):593–605. PubMed
Kadowaki T., Tobe K., Honda-Yamamoto R., Tamemoto H., Kaburagi Y., Momomura K., et al. Signal transduction mechanism of insulin and insulin-like growth factor-1. Endocr J. 1996;43(Suppl):S33–S41. PubMed
Steele-Perkins G., Turner J., Edman J.C., Hari J., Pierce S.B., Stover C., et al. Expression and characterization of a functional human insulin-like growth factor I receptor. J Biol Chem. 1988;263(23):11486–11492. PubMed
Trueba-Saiz A., Fernandez A.M., Nishijima T., Mecha M., Santi A., Munive V., et al. Circulating insulin-like growth factor I regulates its receptor in the brain of male mice. Endocrinology. 2017;158(2):349–355. PubMed
Huang M.B., Xu H., Xie S.J., Zhou H., Qu L.H. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One. 2011;6(12) PubMed PMC
Beckwith H., Yee D. Minireview: were the IGF signaling inhibitors all bad? Mol Endocrinol. 2015;29(11):1549–1557. PubMed PMC
Ekyalongo R.C., Yee D. Revisiting the IGF-1R as a breast cancer target. npj Precis Oncol. 2017;1 PubMed PMC
Crudden C., Girnita A., Girnita L. Targeting the IGF-1R: the tale of the tortoise and the hare. Front Endocrinol. 2015;6:64. PubMed PMC
Werner H., Sarfstein R. Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer. Growth Hormone IGF Res. 2014;24(4):112–118. PubMed
Aleksic T., Chitnis M.M., Perestenko O.V., Gao S., Thomas P.H., Turner G.D., et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010;70(16):6412–6419. PubMed PMC
Bayne M.L., Applebaum J., Underwood D., Chicchi G.G., Green B.G., Hayes N.S., et al. The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. J Biol Chem. 1989;264(19):11004–11008. PubMed
Choi E., Kikuchi S., Gao H., Brodzik K., Nassour I., Yopp A., et al. Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat Commun. 2019;10(1):1473. PubMed PMC
Hall C., Yu H., Choi E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med. 2020;52(6):911–920. PubMed PMC
Yoneyama Y., Lanzerstorfer P., Niwa H., Umehara T., Shibano T., Yokoyama S., et al. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. Elife. 2018;7 PubMed PMC
Zinkle A., Mohammadi M. vol. 7. 2018. p. F1000Res. (A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination). PubMed PMC
Gutmann T., Kim K.H., Grzybek M., Walz T., Coskun U. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J Cell Biol. 2018;217(5):1643–1649. PubMed PMC
Kavran J.M., McCabe J.M., Byrne P.O., Connacher M.K., Wang Z., Ramek A., et al. How IGF-1 activates its receptor. Elife. 2014;3 PubMed PMC
Benkaroun J., Bergmann S.M., Romer-Oberdorfer A., Demircan M.D., Tamer C., Kachh G.R., et al. New insights into lymphocystis disease virus genome diversity. Viruses. 2022;14(12) PubMed PMC